Abstract
A chromate-tolerant mutant chr1-663T bearing a stable one-gene mutation and its parental strain 6chr+ were used to investigate the background of CrVI tolerance in the fission yeast Schizosaccharomyces pombe. The mutant chr1-663T displayed a significantly decreased specific glutathione reductase (GR) activity coded by the pgr1 + gene compared with its parental strain. Transformants of the mutant chr1-663T with a nonintegrative pUR18N vector expressing the pgr1 + gene exhibited the same CrVI sensitivity and specific GR activity as their parental strain, demonstrating the importance of the GR-NADPH system in CrVI tolerance. Transformants, nevertheless, exhibited an increased intracellular peroxide concentration, a decreased CrVI-reducing and HO•-producing ability, which suggested an unbalanced oxidoreduction state of cells and partial complementation of the GR function. No mutation was found in the sequences of the pgr1 + and the pap1 + (transcriptional regulatory gene of GR) genes of the CrVI-tolerant mutant by sequence analysis.
This is a preview of subscription content, access via your institution.
Abbreviations
- BPN:
-
N-tert-butyl-α-phenylnitrone
- GR:
-
glutathione reductase
- t-BuOOH:
-
tert-butylhydroperoxide
- GSH:
-
reduced glutathione
- DHR:
-
dihydrorhodamine 123
- GSSG:
-
oxidized glutathione
- EPR:
-
electron paramagnetic resonance
- MIC(s):
-
minimal inhibitory concentration(s)
- PS:
-
parental strain (6chr+)
- TM(s):
-
CrVI-tolerant mutant(s)
References
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J.: Basic local alignment search tool. J.Mol.Biol.215, 403–410 (1990).
Antal J., Pesti M.: The dose-dependent H2O2 stress response promotes increased survival for Schizosaccharomyces pombe cells expressing HIV-1 Vpr. Folia Microbiol. 51, 406–412 (2006).
Arslan P., Beltrame M., Tomasi A.: Intracellular chromium reduction. Biochim.Biophys.Acta931, 10–15 (1987).
Barbet N., Muriel W.J., Carr A.M.: Versatile shuttle vectors and genomic libraries for use with Schizosaccharomyces pombe. Gene114, 59–66 (1992).
Belágyi J., Pas M., Raspor P., Pesti M., Páli T.: Effect of hexavalent chromium on eukaryotic plasma membrane studied by EPR spectroscopy. Biochim.Biophys.Acta1421, 175–182 (1999).
Benkő Z., Fenyvesvölgyi C., Pesti M., Sipiczki M.: The transformation factor Pap1/Caf3 plays a central role in the determination of caffein resistance in Schizosaccharomyces pombe. Mol.Gen.Genomics271, 161–170 (2004).
Cervantes C., Campos-garcía J., Devars S., Gutiérrez-corona F., Loza-tavera H., Torres-guzmán J.C., Moreno-sánchez R.: Interactions of chromium with microorganisms and plants. FEMS Microbiol.Rev.25, 335–347 (2001).
Chen D., Toone W.M., Mata J., Lyne R., Burns G., Kivinen K., Brazma A., Jones N., Bahler J.: Global transcriptional responses of fission yeast to environmental stress. Mol.Biol.Cell14, 214–229 (2003).
Codd R., Dillon C.T., Levina A., Lay P.A.: Studies on the genotoxicity of chromium: from the tube to the cell. Coord.Chem.Rev.216–217, 537–582 (2001).
Cohen M.D., Kargucin B., Klein C.B., Costa M.: Mechanism of chromium carcinogenicity and toxicity. CRC Rev.Toxicol.23, 255–281 (1993).
Corbett G.E., Dodge D.G.O., Flaherty E., Liang J., Throop L., Finley B.L., Kerger B.D.: In vitro reduction kinetics of hexavalent chromium in human blood. Environ.Res.78, 7–11 (1998).
Costa V., Moradas-ferreira P.: Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and disease. Mol.Asp.Med.22, 217–246 (2001).
Czakó-vér K., Batic M., Raspor P., Sipicki M., Pesti M.: Hexavalent chromium uptake by sensitive and tolerant mutants of Schizosaccharomyces pombe. FEMS Microbiol.Lett.178, 109–115 (1999).
Czakó-Vér K., Koósz Z., Antal J., Rácz T., Sipiczki M., Pesti M.: Characterization of chromate-sensitive and-tolerant mutants of Schizosaccharomyces pombe. Folia Microbiol.49, 31–36 (2004).
De Flora S.: Threshold mechanisms and site specificity in chromium(VI) carcinogenesis. Carcinogenesis21, 533–541 (2000).
Dziadkowiec D., Krasowska A., Liebner A., Sigler K.: Protective role of mitochondrial superoxide dismutase against high osmolarity, heat and metalloid stress in Saccharomyces cerevisiae. Folia Microbiol. 52, 120–126 (2007).
Farkas N., Pesti M., Belágyi J.: Effect of hexavalent chromium on the plasma membrane of sensitive and tolerant mutants of Schizosaccharomyces pombe. An EPR study. Biochim.Biophys.Acta1611, 217–222 (2003).
Gazdag Z., Pócsi I., Belágyi J., Emri T., Blaskó Á., Takács K., Pesti M.: Chromate tolerance caused by reduced hydroxyl radical production and decreased glutathione reductase activity in Schizosaccharomyces pombe. J.Basic Microbiol.43, 96–103 (2003).
Guaragnella N., Antonacci L., Passarella S., Marra E., Giannattasio S.: Hydrogen peroxide and superoxide anion production during acetic acid-induced yeast programmed cell death. Folia Microbiol. 52, 237–240 (2007).
Gutz H.. Heslot H., Leupold U., Loprieno N.: Schizosaccharomyces pombe, pp. 395–466 in R.C. King (Ed.): Handbook of Genetics, Vol. 1. Plenum Press, New York 1974.
Halliwell B., Gutteridge J.M.C.: Free Radicals in Biology and Medicine. Oxford University Press, New York 1999.
Henderson L.M., Chappell J.B.: Dihydrorhodamine 123: a fluorescent probe for superoxide generation? Eur.J.Biochem.217, 973–980 (1993).
Ikner A., Shiozaki K.: Yeast signaling pathways in the oxidative stress responses. Mut.Res.569, 13–27 (2005).
Jamieson D.J.: Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast14, 1511–1527 (1998).
Kortenkamp A., Curran B.O., Brien P.: Defining conditions for the efficient in vitro cross-linking of proteins to DNA by chromium(III) compounds. Carcinogenesis13, 307–308 (1992).
Krasowska A., Piasecki A., Polinceusz A., Prescha A., Sigler K.: Amphiphilic amine-N-oxides with aliphatic alkyl chain act as efficient superoxide dismutase mimics, antioxidants and lipid peroxidation blockers in yeast. Folia Microbiol. 51, 99–107 (2006).
Ksheminska H., Fedorovych D., Babyak L., Yanovych D., Kaszycki P., Koloczek H.: Chromium(III) and (VI) tolerance and bioaccumulation in yeast: a survey of cellular chromium content in selected strains of representative genera. Proc.Biochem.40, 1565–1572 (2005).
Lee J., Dawes I.W., Roe J.H.: Isolation, expression, and regulation of the pgr1+ gene encoding glutathione reductase absolutely required for the growth of Schizosaccharomyces pombe. J.Biol.Chem.272, 23042–23049 (1997).
Levina A., Lay P.A.: Mechanistic studies of relevance to the biological activities of chromium. Coord.Chem.Rev.249, 281–298 (2005).
Mitchison J.M.: Physiological and cytological methods for Schizosaccharomyces pombe. Meth.Cell Physiol.4, 131–165 (1970).
Moreno S., Klar A., Nurse P.: Guide to yeast genetics and molecular biology, pp. 795–823 in C. Guthire, G.R. Fink (Eds): Methods in Enzymology, Vol. 194. Academic Press, San Diego 1991.
Muter O., Patmalnieks A., Rapoport A.: Interrelations of the yeast Candida utilis and CrVI: metal reduction and its distribution in the cell and medium. Proc.Biochem.36, 963–970 (2001).
Okazaki K., Okazaki N., Kume K., Jinno S., Tanaka K., Okayama H.: High-frequency transformation method and library transducing vectors for cloning mammalian cDNAs by trans-complementation of Schizosaccharomyces pombe. Nucl.Acids Res.18, 6485–6489 (1990).
Pearson W.R., Lipman D.J.: Improved tools for biological sequence comparison. Proc.Nat.Acad.Sci.USA85, 2444–2448 (1988).
Pesti M., Novák E.K., Ferenczy L., Svoboda A.: Freeze fracture electron microscopical investigation of Candida albicans cells sensitive and resistant to nystatin. Sabouraudia (J.Med.Microbiol.)19, 17–26 (1981).
Pesti M., Gazdag Z., Belágyi J.: In vivo interaction of trivalent chromium with yeast plasma membrane, as revealed by EPR spectroscopy. FEMS Microbiol.Lett.182, 375–380 (2000).
Pesti M., Gazdag Z., Emri T., Farkas N., Koópsz Zs., Belágyi J., Pecsi I.: Chromate sensitivity in fission yeast is caused by increased glutathione reductase activity and peroxide overproduction. J.Basic Microbiol.42, 408–419 (2002).
Pinto M.C., Mata A.M., López-Barea J.: Reversible inactivation of Saccharomyces cerevisiae glutathione reductase under reducing conditions. Arch.Biochem.Biophys.228, 1–12 (1984).
Roggenkamp R., Sahm H., Wagner F.: Microbial assimilation of methanol induction and function of catalase in Candida boidinii. FEBS Lett.41, 283–286 (1974).
Rose M.D., Winston F., Hieter P.: Methods in Yeast Genetics: a Laboratory Course Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (New York) 1990; Saccharomyces Genome Database: http://seq.yeastgenome.org/cgibin/web-primer .
Sambrook J., Fritsch E.F., Maniatis T.: Molecular Cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (New York) 1989; Schizosaccharomyces pombe Handbook: http://www.bio.uva.nl/pombe/handbook .
Shi X., Dalal N.S.: Evidence for a Fenton-type mechanism for the generation of •OH in the reduction of CrVI in cellular media. Arch. Biochem.Biophys.281, 90–95 (1990a).
Shi X., Dalal N.S.: One-electron reduction of chromate by NADPH-dependent glutathione reductase. J.Inorg.Biochem.40, 1–12 (1990b).
Shi X., Dalal N.S.: The role of superoxide radical in chromium(VI) generated hydroxyl radical: the CrVI Haber-Weiss cycle. Arch. Biochem.Biophys.292, 323–327 (1992).
Shi X., Chiu A., Chen C.T., Halliwell B., Castranova V., Vallyathan V.: Reduction of CrVI and its relationship to carcinogenesis. J.Toxicol.Environ.Health2B, 87–104 (1999).
Sigler K., Chaloupka J., Brozmanová J., Stadler N., Höfer M.: Oxidative stress in microorganisms — I. Microbial vs. higher cells — damage and defenses in relation to cell aging and death. Folia Microbiol.44, 587–624 (1999).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Koósz, Z., Gazdag, Z., Miklós, I. et al. Effects of decreased specific glutathione reductase activity in a chromate-tolerant mutant of Schizosaccharomyces pombe . Folia Microbiol 53, 308–314 (2008). https://doi.org/10.1007/s12223-008-0048-4
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12223-008-0048-4
Keywords
- Glutathione Reductase
- Fission Yeast
- Tolerant Mutant
- Chromate Tolerance
- Plasmid Stability Test