Skip to main content
Log in

Transcriptional regulators of seven yeast species: Comparative genome analysis — Review

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The regulation of gene transcription allows yeast cells to respond properly to changing environmental conditions. Several protein complexes take part in this process. They involve RNA polymerase complexes, chromatin remodeling complexes, mediators, general transcription factors and specific transcriptional regulators. Using Saccharomyces cerevisiae as reference, the genomes of six species (Ashbya gossypii, Kluyveromyces lactis, K. waltii, Candida albicans, C. glabrata and Schizosaccharomyces pombe) that are human pathogens or important for the food industry were analyzed for their complement of genes encoding the homologous transcriptional regulators. The number of orthologs identified in a given species correlated with its phylogenetic distance from S. cerevisiae. Many duplicated genes encoding transcriptional regulators in S. cerevisiae and C. glabrata were reduced to one copy in species diverged before the ancestral whole genome duplication. Some transcriptional regulators appear to be specific for S. cerevisiae and probably reflect the physiological differences among species. Phylogenetic analysis and conserved gene order relationships indicate that a similar set of gene families involved in the control of multidrug resistance and oxidative stress response already existed in the common ancestor of the compared fungal species

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CTD:

C-terminal domain

PIC:

pre-initiation complex

HAT(s):

histone acetyltransferase(s)

RNA pol II:

RNA polymerase II

HDAC(s):

histone deacetylase(s)

TA(s):

transcriptional activator(s)

βHLH:

helix-loop-helix (motif)

TAF(s):

TBP-associated factor(s)

HTH:

helix-turn-helix (motif)

TBP:

TATA-binding protein

MADS:

Mcm1p, Agamous, Deficiens, Serum response factor

TF(s):

transcription factor(s)

TR(s):

transcriptional regulator(s)

MDR:

multidrug resistance

References

  • Abraham D.S., Vershon A.K.: N-Terminal arm of Mcm1 is required for transcription of a subset of genes involved in maintenance of the cell wall. Eukar.Cell 4, 1808–1819 (2005).

    Article  CAS  Google Scholar 

  • Akache B., Mcpherson S., Sylvain M.A., Turcotte B.: Complex interplay among regulators of drug resistance genes in Saccharomyces cerevisiae. J.Biol.Chem. 279, 27855–27860 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Alfrey V.G., Faulkner R., Mirsky A.E.: Acetylation and methylation of histones and their possible role in the regulation in RNA synthesis. Proc.Nat.Acad.Sci.USA 51, 786–794 (1964).

    Article  Google Scholar 

  • Allard S., Utley R.T., Savard J., Clark A., Grant P., Brandl C.J., Pillus L., Workman J.L., Crote J.: Nua4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related factor Tra1p. EMBO J. 18, 5108–5119 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl.Acids Res. 25, 3389–3402 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Austrias F.J., Jiang Y.W., Myers L.C., Gustafsson C.M., Kornberg R.D.: Conserved structure of mediator and RNA polymerase II holoenzyme. Science 283, 985–987 (1999).

    Article  Google Scholar 

  • Balzi E., Goffeau A.: Genetics and biochemistry of yeast multidrug resistance. Biochim.Biophys.Acta 1187, 152–162 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Bedalov A., Hirao M., Posakony J., Nelson M., Simon J.A.: NAD+-dependent deacetylase Hst1p controls biosynthesis and cellular NAD+ levels in Saccharomyces cerevisiae. Mol.Cell Biol. 19, 7044–7054 (2003).

    Article  CAS  Google Scholar 

  • Bell A.C., Felsfenfeld G.: Stopped at the border, boundaries and insulators. Curr.Opin.Genet.Dev. 9, 191–198 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Benard L., Carroll K., Valle R.C., Masison D.C., Wickner R.B.: Ski7 antiviral protein is an EF1-α homolog that blocks expression of non-poly(A)mRNA in Saccharomyces cerevisiae. J.Virol. 73, 2893–2900 (1999).

    PubMed  CAS  Google Scholar 

  • Berger S.L.: Histone modifications in transcriptional regulation. Curr.Opin.Genet.Dev. 12, 142–148 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Bhoite L.T., Yu Y., Stilman D.J.: The Swi5 activator recruits the mediator complex to the HO promoter without RNA polymerase II. Genes Dev. 15, 2457–2469 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Bialková A., Šubík J.: Biology of the pathogenic yeast Candida glabrata. Folia Microbiol. 51, 3–20 (2006).

    Article  Google Scholar 

  • Biddick R., Young E.T.: Yeast mediator and its role in transcriptional regulation. C.R.Biol. 328, 773–782 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Böhm S., Frishman D., Mewes H.W.: Variation of C2H2 zinc finger motif in the yeast genome and classification of zinc finger protein. Nucl.Acid Res. 25, 2464–2469 (1997).

    Article  Google Scholar 

  • Brown T.A.: Genomes, 2nd ed. BIOs Scientific Publishing, Oxford (UK) 2002.

    Google Scholar 

  • Buratowski S., Hahu S., Guarente L., Sharp P.A.: Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56, 539–561 (1989).

    Article  Google Scholar 

  • Bussereau F., Lafay L.F., Bolotin-Fukuhara M.: Zinc finger transcriptional activators of yeast. FEMS Yeast Res. 4, 445–458 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Bussereau F., Casaregola S., Lafay L.F., Bolotin-fukuhara M.: The Kluyveromyces lactis repertoire of transcriptional regulators. FEMS Yeast Res. 6, 325–335 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Byrne K.P., Wolfe K.H.: The yeast gene order browser: contex reveals gene fate in polyploid species. Genome Res. 15, 1456–1461 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Byrne K.P., Wolfe K.H.: Consistent pattern of rate asymmetry and gene loss indicate widespread neofunctionalization of yeast genes after whole genome duplication. Genetics 175, 1341–1350 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Cai M., Davis R.W.: Yeast centromere binding protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy. Cell 61, 437–446 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Cairns B.R., Kim Y.J., Sayre M.H., Laurent B.C., Kornberg R.D.: A multisubunit complex containing the SWI1/ADR6, SWI2/SNF2, SWI3, SNF5 and SNF6 gene products isolated from yeast. Proc.Nat.Acad.Sci.USA 91, 1950–1954 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Cairns B.R., Henry N.L., Kornberg R.D.: TFG3/TAF30/ANC1, a component of the yeast SWI/SNF complex that is similar to the leucomogenic proteins ENL and AF-9. Mol.Cell.Biol. 16, 3308–3316 (1996a).

    PubMed  CAS  Google Scholar 

  • Cairns B.R., Lorch Y., Li Y., Zhang M.C., Lacomis L., Erdjumentbromage H., Tempst P., Du J., Laurent B., Kornberg R.D.: RSC an essential, abundant chromatin-remodeling complex. Cell 87, 1249–1260 (1996b).

    Article  PubMed  CAS  Google Scholar 

  • Coste A.T., Karababa M., Ischer F., Bille J., Sanglard D.: TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot.Cell 3, 1639–1652 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Cramer P.: RNA polymerase II structure to functional complexes. Curr.Opin.Gen.Dev. 14, 218–226 (2004).

    Article  CAS  Google Scholar 

  • Cui Z., Shiraki T., Hirata D., Miyakawa T.: Yeast gene YRR1, which is required for resistance to 4-nitroquinoline N-oxide, mediates transcriptional activation of the multidrug resistance transporter gene SNQ2. Mol.Microbiol. 29, 1307–1315 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Derisi J., Van Den Hazel B., Marc P., Balzi E., Brown P., Jacq C., Goffeau A.: Genome microarray analysis of transcriptional activation in multidrug resistant yeast mutants. FEBS Lett. 470, 156–160 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Dietrich F.S., Voegeli S., Brachat S., Lerch A., Gates K., Steiner S., Mohr C., Pöhlmann R., Luedi P., Choi S., Wing R.A., Flavier A., Gaffney T.D., Philippsen P.: The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304, 304–307 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Dujon B.: Hemiascomycetous yeasts at the forefront of comparative genomics. Curr.Opin.Genet.Dev. 15, 614–620 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Dujon B., Sherman D., Fischer G., Durrens P., Casaregola S., Lafontaine I., De Montigny J., Marck C., Neuveglise C., Talla E., Goffard N., Frangeul L., Aigle M., Anthouard V., Babour A., Barbe V., Barnay S., Blanchin S., Beckerich J.M., Beyne E., Bleykasten C., Boisrame A., Boyer J., Cattolico L., Confanioleri F., de Daruvar A., Despons L., Fabre E., Fairhead C., Ferry-dumazet H., Groppi A., Hantraye F., Hennequin C., Jauniaux N., Joyet P., Kachouri R., Kerrest A., Koszul R., Lemaire M., Lesur I., Ma L., Muller H., Nicaud J.M., Nikolski M., Oztas S., Ozier-kalogeropoulos O., Pellenz S., Potier S., Richard G.F., Straub M.L., Suleau A., Swennen D., Tekaia F., Wesolowski-louvel M., Westhof E., Wirth B., Zeniou-meyer M., Zivanovic I., Bolotin-fukuhara M., Thierry A., Bouchier C., Caudron B., Scarpelli C., Gaillardin C., Weissenbach J., Wincker P., Souciet J.L.: Genome evolution in yeasts. Nature 430, 35–44 (2004).

    Article  PubMed  Google Scholar 

  • Ekwall K.: Genome-wide analysis of HDAC function. Trends Genet. 21, 608–615 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Flanagan P.M., Kelleher I.R.J., Sayre M.H., Tschochner H., Kornberg R.D.: A mediator required for activation of RNA polymerase II transcription in vitro. Nature 350, 436–438 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Garner M.M., Revzin A.: A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions, application to components of Escherichia coli lactose operon regulatory system. Nucl.Acids Res. 9, 3047–3060 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Gasch A.P., Moses A.M., Chiang D.Y., Fraser H.B., Berardini M., Berman J., Barkai N.: Conservation and evolution of cisregulatory systems in ascomycete fungi. PLOS Biol. 2, E398 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Gbelská Y., Krijger J.J., Breunig K.D.: Evolution of gene families: the multidrug resistance transporter genes in five related yeast species. FEMS Yeast Res. 6, 345–355 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Georgakopoulos T., Thireos G.: Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal level of transcription. EMBO J. 11, 4145–4152 (1992).

    PubMed  CAS  Google Scholar 

  • Goffeau A., Barrel B.G., Bussey H., Davis R.W., Dujon B., Feldmann H., Galibert F., Hoheisel J.D., Jacq C., Johnston M., Louis E.J., Mewes M.W., Murakami Y., Philippsen P., Tethelin H., Oliver S.G.: Life with 6000 genes. Science 274, 546–563 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Grant P.A., Sterner D.E., Duggan L.J., Workman J.L., Berger S.L.: The SAGA unfolds, convergence of transcription regulators in chromatin-modifying complexes. Trends Cell Biol. 8, 193–197 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Halberg M., Polozkov G.V., Hu G.Z., Beve J., Gustafsson C.M., Ronne H., Bjorklund S.: Site-specific Srb10-dependent phosphorylation of the yeast mediator subunit Med2 regulates gene expression from the 2-micron plasmid. Proc.Nat.Acad.Sci.USA 101, 3370–3375 (2004).

    Article  CAS  Google Scholar 

  • Hampsey M.: Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol.Mol.Biol.Rev. 62, 465–503 (1998).

    PubMed  CAS  Google Scholar 

  • Hampsey M., Reinberg D.: Tails of intrigue, phosphorylation of RNA polymerase II mediates histone methylation. Cell 113, 429–432 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Harrison S.C., Aggarwal A.K.: DNA recognition by proteins with the helix-turn-helix motif. Ann.Rev.Biochem. 59, 933–999 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Henry N.L., Cambell A.M., Feaver W.J., Poon D., Weil P.A., Kornberg R.D.: TFIIF-TAF-RNA polymerase II connection. Genes Dev. 8, 2868–2878 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Hittinger C.T., Rokas A., Carroll S.B.: Parallel inactivation of multiple GAL pathway genes and ecological diversification in yeasts. Proc.Nat.Acad.Sci.USA 101, 14144–14149 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Hollenhorst P.C., Bose M.E., Mielke M.R., Müller U., Fox C.A.: Forkhead genes in transcriptional silencing, cell morphology and the cell cycle, overlapping and distinct functions for FKH1 and FKH2 in Saccharomyces cerevisiae. Genetics 154, 1533–1548 (2000).

    PubMed  CAS  Google Scholar 

  • Hoshizaki D.K., Hill J.E., Henry S.A.: The Saccharomyces cerevisiae INO4 gene encodes a small, highly basic protein required for derepression of phospholipid biosynthetic enzymes. J.Biol.Chem. 265, 4736–4745 (1990).

    PubMed  CAS  Google Scholar 

  • Jiang Y.W., Stilman D.J.: Involvement of the SIN4 global transcriptional regulator in the chromatin structure of Saccharomyces cerevisiae. Mol.Cell.Biol. 12, 4503–4514 (1992).

    PubMed  CAS  Google Scholar 

  • Johnston S.A., Hopper J.E.: Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon. Proc.Nat.Acad.Sci.USA 79, 6971–6975 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Jones T., Federspiel N.A., Chibana H., Dungan J., Kalman S., Magge B.B., Newport G., Thorstenson Y.R., Agabian N., Magee P.T., Dawis P.W., Scherer S.: The diploid genome sequence of Candida albicans. Proc.Nat.Acad.Sci.USA 101, 7329–7334 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Jungwirth H., Kuchler K.: Yeast ABC transporters — a tale of sex, stress, drugs and aging. FEBS Lett. 580, 1131–1138 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Kellis M., Petterson N., Endrizzi M., Birren B., Lander E.S.: Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Kellis M., Birren B.W., Lander E.S.: Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428, 617–624 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Kim Y.J., Bjorklund S., Li Y., Sayre M.H., Kornberg R.D.: A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599–608 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Kingston R.E., Narlikar G.J.: ATP-dependent remodeling and acetylation as regulator of chromatin fluidity. Genes Dev. 13, 2339–2352 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Kleff S., Andrulish E.D., Anderson C.W., Sternglanz R.: Identification of a gene encoding a yeast histone H4 acetyltransferase. J.Biol.Chem. 270, 24674–24677 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Kornberg R.D., Lorch Y.: Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–294 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Lai E., Clark K.L., Burley S.K., Darnell J.E.: Hepatocyte nuclear factor 3/forkhead or “winged helix” proteins, a family of transcription factors of diverse biologic functions. Proc.Nat.Acad.Sci.USA 90, 10421–10423 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Laity J.H., Lee B.M., Wright P.E.: Zinc finger proteins, new insights into structural and functional diversity. Curr.Opin.Struct.Biol. 11, 39–46 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Laughon A., Gesteland R.F.: Isolation and preliminary characterization of the GAL4 gene, a positive regulator of transcription in yeast. Proc.Nat.Acad.Sci.USA 79, 6827–6831 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Lee Y.C., Kim Y.J.: Requirement for a functional interaction between mediator components Med6 and Srb4 in RNA polymerase II transcription. Mol.Cell.Biol. 18, 5364–5370 (1998).

    PubMed  CAS  Google Scholar 

  • Lee T.I., Young T.A.: Transcription of eukaryotic protein-coding genes. Ann.Rev.Genet. 34, 77–137 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Lee S.W., Tomasetto C., Sager R.: Positive selection of candidate tumor-supressor genes by subtractive hybridization. Proc.Nat. Acad.Sci.USA 88, 2825–2829 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Lorch Y., Beve J., Gustafsson C.M., Myers L.C., Kornberg R.D.: Mediator-nucleosome interaction. Mol.Cell 6, 197–201 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Macpherson S., Larochelle M., Turcotte B.: A fungal family of transcriptional regulators, the zinc cluster proteins. Microb.Mol. Biol.Rev. 70, 583–604 (2006).

    Article  CAS  Google Scholar 

  • Malpertuy A., Tekaia F., Casarégola S., Aigle M., Artiguenave F., Blandin G., Bolotin-Fukuhara M., Bon E., Brottier P., de Montigny J., Durrens P., Gaillardin C., Lépingle A., Llorente B., Neuvéglise C., Ozier-Kalogeropoulos O., Potier S., Saurin W., Toffano-Nioche C., Weśolowski-Louvel M., Wincker P., Weissenbach J., Sou Ciet J., Dujon B.: Genomic exploration of the hemiascomycetous yeasts. 19. Ascomycetes-specific genes. FEBS Lett. 487, 113–121 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Mamnun Y.R., Pandjaitan R., Mahe Y., Delahodde A., Kuchler K.: The zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo-and heterodimers in vivo. Mol.Microbiol. 46, 1429–1440 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Pastor M.T., Marchler G., Schiller C., Marchler-Boner A., Ruis H.: The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15, 2227–2235 (1996).

    PubMed  CAS  Google Scholar 

  • Massari M.E., Murre C.: Helix-loop-helix proteins, regulators of transcription in eukaryotic organisms. Mol.Cell.Biol. 20, 249–440 (2000).

    Article  Google Scholar 

  • Nichols J., Straffon M., Enjalbert B., Nantel A., Macaskill S., Whiteway M., Brown A.J.P.: Msn2/4-like transcription factors play no obvious roles in the stress responses of the fungal pathogen, Candida albicans. Eukaryot.Cell 3, 1111–1123 (2004).

    Article  CAS  Google Scholar 

  • Nikoloff D.M., Mcgraw P., Henry S.A.: The INO2 gene of Saccharomyces cerevisiae encodes a helix-loop-helix protein that is required for activation of phospholipid synthesis. Nucl.Acids Res. 20, 3253–3258 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa M.: Negative regulation of transcription by the yeast global transcription factors, Gal11 and Sin4. Yeast 18, 1099–1110 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Ohkuma Y.: Multiple functions of general transcription factors TFIIE and TFIIH in transcription, possible points of regulation by trans-acting factors. J.Biochem. 122, 481–489 (1997).

    PubMed  CAS  Google Scholar 

  • Pabo C.O., Sauer R.T.: Transcription factors, structural families and principles of DNA recognition. Ann.Rev.Biochem. 61, 1053–1095 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Papamichos-Chronakis M., Conlan R.S., Gounalaki N., Copf T., Tzamarias D.: Hrs1/Med3 is a Cyc8-Tup1 corepressor target in the RNA polymerase II holoenzyme. J.Biol.Chem. 275, 8397–8403 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Piskur J., Lankjaer R.B.: Yeast genome sequencing: the power of comparative genomics. Mol.Microbiol. 53, 381–389 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Poon D., Bai Y., Cambell A.M., Bjorklund S., Kim Y.J., Zhou S., Kornberg R.D., Weil P.A.: Identification and characterization of a TFIID-like multiprotein complex from Saccharomyces cerevisiae. Proc.Nat.Acad.Sci.USA 92, 8224–8228 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Prasad R., Panwar S.L., Smriti A.: Drug resistance in yeasts — an emerging scenario. Adv.Microb.Physiol. 46, 155–201 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Ptashne M., Gann A.: Transcriptional activation by recruitment. Nature 386, 569–577 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Ramakrishnan V.: Histone H1 and chromatin higher-order structure. Crit.Rev.Eukaryot.Gene Expr. 7, 215–230 (1997).

    PubMed  CAS  Google Scholar 

  • Ren B., Robert F., Wyrick J.J., Aparicio O., Jennings E.G., Simon I., Zeitlinger J., Schreiber J., Hannett N., Kanin E., Volkert T.L., Wilson C.J., Bell S.P., Young R.A.: Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Robert F., Pokholok D.K., Hannet N.M., Rinaldi N.J., Chandy M., Rolfe A., Workman J.L., Gifford D.K., Young R.A.: Global position and recruitment of HATs and HDACs in the yeast genome. Mol.Cell 16, 199–209 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Sanglard D.: Genomic view on antifungal resistance mechanisms among yeast and fungal pathogens, pp. 359–383 in Candida, Comparative and Functional Genomics (C. d’Enfert, B. Hube, Eds). Caister Academic Press, Norfolk (UK) 2007.

    Google Scholar 

  • Scannell D., Butler G., Wolfe K.H.: Yeast genome evolution — the origin of the species. Yeast 24, 929–942 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Schjerling P., Holmberg S.: Comparative amino acid sequence analysis of the C6 zinc cluster family of transcriptional regulators. Nucl.Acids Res. 24, 4599–4607 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Sellick C.A., Reece R.J.: Eukaryotic transcription factors as direct nutrient sensors. Trends Biochem.Sci. 30, 405–412 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Souciet J.L., Aigle M., Artiguenave F., Blandin G., Bolotin-fukuhara M., Bon E., Brottier P., Casaregola S., De Montigny J., Dujon B.: Genomic exploration of the hemiascomycetous yeast. FEBS Lett. 487, 3–147 (2000).

    Article  PubMed  Google Scholar 

  • Struhl K.: Yeast transcriptional regulatory mechanisms. Ann.Rev.Genet. 29, 651–674 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Talibi D., Raymond M.: Isolation of putative Candida albicans transcriptional regulator involved in pleiotropic drug resistance by functional complementation of pdr1pdr3 mutations in Saccharomyces cerevisiae. J.Bacteriol. 181, 231–240 (1999).

    PubMed  CAS  Google Scholar 

  • Taverner N.V., Smith J.C., Wardle F.C.: Identifying transcriptional targets. Genome Biol. 5, 210–216 (2004).

    Article  PubMed  Google Scholar 

  • Teixeira M.C., Monteiro P., Jain P., Tenreiro S., Fernandes A.R., Mira N.P., Alenguer M., Freitas A.T., Oliveira A.L., Sacorreia I.: The Yeastract database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucl.Acids Res. 34, D446–D451 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Tirosh I., Barkai N.: Comparative analysis indicates regulatory neofunctionalization of yeast duplicates. Genome Biol. 8, R50 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Todd R.B., Andrianopulos A.: Evolution of a fungal regulatory gene family, the ZnII 2Cys6 binuclear cluster DNA binding motif. Fungal Genet.Biol. 21, 388–405 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Urnov F.D.: A feel for the template, zinc finger protein transcription factors and chromatin. Biochem.Cell.Biol. 80, 321–333 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Urnov F.D., Wolffe A.P.: Chromatin remodeling and transcriptional activation, the cast (order in appearance). Oncogene 20, 2991–3006 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Vallee B.L., Coleman J.E., Auld D.S.: Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains. Proc.Nat.Acad.Sci.USA 88, 999–1003 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Van Steensel B., Henikoff S.: Identification in vivo DNA targets of chromatin proteins using tethered Dam methyltransferase. Nat.Biotechnol. 18, 379–380 (2000).

    Article  CAS  Google Scholar 

  • Van Steensel B., Delrow J., Henikoff S.: Chromatin profiling using targeted DNA adenine methyltransferase. Nat.Genet. 27, 304–308 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Velculescu V.E., Zhang L., Vogelstein B., Kinzler K.W.: Serial analysis of gene expression. Science 270, 484–487 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Velculescu V.E., Vogelstein B., Kinzler K.W.: Analysing uncharted transcriptomes with SAGE. Trends Genet. 16, 423–425 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Vignali M., Hassan A.H., Neely K.E., Workman J.L.: ATP-dependent chromatin-remodeling complexes. Mol.Cell.Biol. 20, 1899–1910 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Wolfe K.H., Shields D.C.: Molecular evidence for ancient duplication of the entire yeast genome. Nature 387, 708–713 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Workman J.L., Kingston R.E.: Alteration of nucleosome structure as a mechanism of transcriptional regulation. Ann.Rev.Biochem. 65, 545–579 (1998).

    Article  Google Scholar 

  • Wu J., Grunstein M.: 25 years after the nucleosome mode, chromatin modifications. Trends Biochem.Sci. 25, 619–623 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Yang V.W.: Eukaryotic transcription factors: identification, characterization and function. J.Nutr. 128, 2045–2051 (1998).

    PubMed  CAS  Google Scholar 

  • Zhang L., Guarente L.: The yeast activator HAP1 — a GAL4 family member — binds DNA in a directly repeated orientation. Genes Dev. 8, 2110–2119 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Šubík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drobná, E., Bialková, A. & Šubík, J. Transcriptional regulators of seven yeast species: Comparative genome analysis — Review . Folia Microbiol 53, 275–287 (2008). https://doi.org/10.1007/s12223-008-0044-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-008-0044-8

Keywords

Navigation