Skip to main content
Log in

Visualization of symbiotic tissue in intact root nodules of Vicia tetrasperma using GFP-marked Rhizobium leguminosarum bv. viciae

  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

In rhizobial symbiosis with legume plant hosts, the symbiotic tissue in the root nodules of indeterminate type is localized to the basal part of the nodule where the symbiotic zones contain infected cells (IC) interspersed with uninfected cells (UC) that are devoid of rhizobia. Although IC are easily distinguished in nodule sections using standard histochemical techniques, their observation in intact nodules is hampered by nodule tissue characteristics. Tagging of Rhizobium leguminosarum bv. viciae strain 128C30 with a constitutively expressed gene for green fluorescent protein (nonshifted mutant form cycle3) in combination with the advantages of the tiny nodules formed by Vicia tetrasperma (L.) Schreb. allowed for vital observation of symbiotic tissue using fluorescence microscopy. Separation of a red-shifted background channel and digital image stacking along z-axis enabled us to construct a nodule image in a classical fluorescence microscopy of nodules exceeding 1 mm in diameter. In parallel, visualization of nodule bacteria inside the symbiotic tissue by confocal microscopy at the excitation wavelength 488 nm clearly distinguished IC/UC pattern in the nodule virtual sections and revealed red-shifted fluorescence of nonrhizobial origin. This signal was located on the periphery of IC and increased with their degradation, thus suggesting accumulation of secondary metabolites, presumably flavonoids. The simultaneous detection of bacteria and secondary metabolites can be used for monitoring changes to intact nodule physiology in the model legumes. The advantage of V. tetrasperma as a suggested laboratory model for pea cross-inoculation group has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GFP:

green fluorescent protein

IC:

infected cells

UC:

uninfected cells

References

  • Beijerinck M.W.: Die Bacterien der Papilionaceenknöllchen. Bot.Z. 46, 725–804 (1888).

    Google Scholar 

  • Boivin C., Camut S., Malpica C.A., Truchet G., Rosenberg C.: Rhizobium meliloti genes encoding catabolism of trigonelline are induced under symbiotic conditions. Plan Cell 2, 1157–1170 (1990).

    CAS  Google Scholar 

  • Chovanec P., Novák K.: Visualization of nodulation gene activity on the early stages of Rhizobium leguminosarum bv. viciae symbiosis. Folia Microbiol. 50, 323–331 (2005).

    Article  CAS  Google Scholar 

  • Crameri A., Whitehorn E.A., Tate E., Stemmer W.P.C.: Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnol. 14, 315–319 (1996).

    Article  CAS  Google Scholar 

  • Cubitt A.B., Heim R., Adams S.R., Boyd A.E., Gross L.A., Tsien R.Y.: Understanding, improving and using green fluorescent proteins. Trends Biochem.Sci. 20, 448–455 (1995).

    Article  PubMed  CAS  Google Scholar 

  • DeBilly F., Barker D.G., Gallasci P., Truchet G.: Leghemoglobin gene transcription is triggered in a single cell layer in the indeterminate nitrogen-fixing root nodule of alfalfa. Plant J. 1, 27–35 (1991).

    Article  CAS  Google Scholar 

  • Figurski D.H., Helinski D.R.: Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc.Nat.Acad.Sci.USA 76, 1648–1652 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Franssen H.J., Vijn I., Yang W.C., Bisseling T.: Developmental aspects of the Rhizobium-legume symbiosis. Plant Mol.Biol. 19, 89–107 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Gage D.J., Bobo T., Long S.R.: Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa). J.Bacteriol. 178, 7159–7166 (1996).

    PubMed  CAS  Google Scholar 

  • Handberg K., Stougaard J.: Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J. 2, 487–496 (1992).

    Article  Google Scholar 

  • Harborne J.B.: The comparative biochemistry of phytoalexin induction in plants. Biochem.Syst.Ecol. 27, 335–367 (1999).

    Article  CAS  Google Scholar 

  • Herrero M., de Lorenzo V., Timmis K.N.: Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J.Bacteriol. 172, 6557–6567 (1990).

    PubMed  CAS  Google Scholar 

  • Leyva A., Palacios J.N., Ruiz-Argueso T.: Conserved plasmid hydrogen-uptake (hup)-specific sequences within Hup+ Rhizobium leguminosarum strains. Appl.Environ.Microbiol. 53, 2539–2543 (1987).

    PubMed  CAS  Google Scholar 

  • Masterson R.V., Prakash R.K., Atherly A.G.: Conservation of symbiotic nitrogen fixation gene sequences in Rhizobium japonicum and Bradyrhizobium japonicum. J.Bacteriol. 163, 21–26 (1985).

    PubMed  CAS  Google Scholar 

  • Mathesius U., Bayliss C., Weinman J.J., Schlaman H.R.M., Spaink H.P., Rolfe B.G., McCully M.E., Djordjevic M.A.: Flavonoids synthesized in cortical cells during nodule initiation are early developmental markers in white clover. Mol.Plant-Microbe Interact. 11, 1223–1232 (1998).

    Article  CAS  Google Scholar 

  • Mellor R.B.: Bacteriods in the Rhizobium-legume symbiosis inhabit a plant internal lytic compartment: implications for other microbial endosymbioses. J.Exp.Bot. 40, 831–839 (1989).

    Article  CAS  Google Scholar 

  • Newcomb W.: A correlated light and electron microscopic study of symbiotic growth and differentiation in Pisum sativum root nodules. Can.J.Bot. 54, 2163–2186 (1976).

    Article  Google Scholar 

  • Niehaus K., Kapp D., Pühler A.: Plant defense and delayed infection of alfalfa pseudonodules induced by an exopolysaccharide (EPS I)-defficient Rhizobium meliloti mutant. Planta 190, 415–425 (1993).

    Article  CAS  Google Scholar 

  • Novák K., Chovanec P., Škrdleta V., Kropáčová M., Lisá L., Němcová M.: Effect of exogenous flavonoids on nodulation of pea (Pisum sativum L.). J.Exp.Bot. 53, 1735–1745 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Novák K., Lisá L., Škrdleta V.: Rhizobial nod gene-inducing activity in pea nodulation mutants: dissociation of nodulation and flavonoid response. Physiol.Plant. 120, 546–555 (2004).

    Article  PubMed  Google Scholar 

  • Oke V., Long S.R.: Bacterial genes induced within the nodule during the Rhizobium-legume symbiosis. Mol.Microbiol. 32, 837–849 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Parniske M., Fischer H.-M., Hennecke H., Werner D.: Accumulation of the phytoalexin glyceollin I in soybean nodules infected by a Bradyrhizobium japonicum nifA mutant. Z.Naturforsch. 46c, 318–320 (1991).

    Google Scholar 

  • Penmetsa R.V., Cook D.R.: A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275, 527–530 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Quandt H.J., Pühler A., Broer I.: Transgenic root nodules of Vicia hirsuta — a fast and efficient system for the study of gene expression in indeterminate-type nodules. Mol.Plant-Microbe Interact. 6, 699–706 (1993).

    Google Scholar 

  • Recourt K., Schripsema J., Kijne J.W., Van Brussel A.A.N., Lugtenberg B.J.J.: Inoculation of Vicia sativa subsp. nigra roots with Rhizobium leguminosarum biovar viciae results in release of nod gene activating flavanones and chalcones. Plant Mol.Biol. 16, 841–852 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J., Fritsch E.F., Maniatis T.: Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor (USA) 1989.

    Google Scholar 

  • Scheres B., Van Engelen F., Van der Knaap E., Van de Wiel C., Van Kammen A., Bisseling T.: Sequential induction of nodulin gene expression in the developing pea nodule. Plant Cell 2, 687–700 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Schmidt P.E., Broughton W.J., Werner D.: Nod factors of Bradyrhizobium japonicum and Rhizobium sp. NGR234 induce flavonoid accumulation in soybean root exudate. Mol.Plant-Microbe Interact. 7, 384–390 (1994).

    CAS  Google Scholar 

  • Sharma S.B., Signer E.R.: Temporal and spatial regulation of the symbiotic genes of Rhizobium meliloti in planta revealed by transposon Tn5-gusA. Genes & Dev. 4, 344–356 (1990).

    Article  CAS  Google Scholar 

  • Simon R., Priefer U., Pühler A.: A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1, 784–791 (1983).

    Article  CAS  Google Scholar 

  • Spaink H.P.: Root nodulation and infection factors produced by rhizobial bacteria. Ann.Rev.Microbiol. 54, 257–288 (2000).

    Article  CAS  Google Scholar 

  • Stuurman N., Bras C.P., Schlaman H.R.M., Wijfjes A.H.M., Bloemberg G., Spaink H.P.: Use of green fluorescent protein color variants expressed on stable broad-host-range vectors to visualize rhizobia interacting with plants. Mol.Plant-Microbe Interact. 13, 1163–1169 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Tsyganov V.E., Voroshilova V.A., Priefer U.B., Borisov A.Y., Tikhonovich I.A.: Genetic dissection of the initiation of the infection process and nodule tissue development in the Rhizobium-pea (Pisum sativum L.) symbiosis. Ann.Bot. 89, 357–366 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Van Brussel A.A.N., Tak T., Wetselaar A., Pees E., Wijffelman C.A.: Small Leguminosae as test plants for nodulation of Rhizobium leguminosarum and other rhizobia and agrobacteria harboring a leguminosarum Sym-plasmid. Plant Sci.Lett. 27, 317–325 (1982).

    Article  Google Scholar 

  • Vance C.P., Boylan K.L.M., Stade S.: Host plant determinants of legume nodule function: similarities to plant disease situation, pp. 271–287 in S. Nishimura, C.P. Vance, N. Doke (Eds): Molecular Determinants of Plant Diseases. Japan Sci. Soc. Press-Springer, Tokyo-Berlin 1987.

    Google Scholar 

  • Vasse J., De Billy F., Truchet G.: Abortion of infection during the Rhizobium meliloti—alfalfa symbiotic interaction is accompanied by a hypersensitive reaction. Plant J. 4, 555–566 (1993).

    Article  Google Scholar 

  • Vincent J.M.: A Manual for the Practical Study of the Root Nodule Bacteria. Blackwell, Oxford (UK) 1970.

    Google Scholar 

  • Voroshilova V.A., Boesten B., Tsyganov V.E., Borisov A.Y., Tikhonovich I.A., Priefer U.B.: Effect of mutations in Pisum sativum L. genes blocking different stages of nodule development on the expression of late symbiotic genes in Rhizobium leguminosarum bv. viciae. Mol.Plant-Microbe Interact. 14, 471–476 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Wilson K.J.: Molecular techniques for the study of rhizobial ecology in the field. Soil Biol.Biochem. 27, 501–514 (1995).

    Article  CAS  Google Scholar 

  • Wolff A.B., Werner D.: Defense reactions in Rhizobium-legume symbiosis: phytoalexin concentration in Vicia faba nodules is affected by the host plant genotype. Z.Naturforsch 45c, 958–962 (1990).

    Google Scholar 

  • Xi C., Lambrecht M., Vanderleyden J., Michiels J.: Bi-functional gfp- and gusA-containing mini-Tn5 transposon derivatives for combined gene expression and bacterial localization studies. J.Microbiol.Meth. 35, 85–92 (1999).

    Article  CAS  Google Scholar 

  • Xi C., Dirix G., Hofkens J., De Schryver F.C., Vanderleyden J., Michiels J.: Use of dual marker transposons to identify new symbiosis genes in Rhizobium. Microbial Ecol. 41, 325–332 (2001).

    CAS  Google Scholar 

  • Yang W.C., Cremers H.C.J.C., Hogendijk P., Katinakis P., Wijffelman C.A., Franssen H., Van Kammen A., Bisseling T.: In situ localization of chalcone synthase messenger RNA in pea root nodule development. Plant J. 2, 143–151 (1992).

    Article  CAS  Google Scholar 

  • Zaat S.A.J., Wijffelman C.A., Mulders I.H.M., Van Brussel A.A.N., Lugtenberg B.J.J.: Root exudates of various host plants of Rhizobium leguminosarum contain different sets of inducers of Rhizobium nodulation genes. Plant Physiol. 86, 1298–1303 (1988).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Novák.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chovanec, P., Hovorka, O. & Novák, K. Visualization of symbiotic tissue in intact root nodules of Vicia tetrasperma using GFP-marked Rhizobium leguminosarum bv. viciae . Folia Microbiol 53, 139–146 (2008). https://doi.org/10.1007/s12223-008-0020-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-008-0020-3

Keywords

Navigation