Folia Microbiologica

, Volume 53, Issue 1, pp 84–88 | Cite as

Probiotic potential of enterococci isolated from canine feed

  • A. Lauková
  • M. Marciňáková
  • V. Strompfová
  • A. C. Ouwehand


Enterococci isolated from 28 different commercially available feeds (10–1000 CFU/mL) were identified and their probiotic potential was determined. Species identification of 22 selected strains was performed by intergenic length-polymorphism analysis (tRNA-PCR); PCR products were analyzed using capillary electrophoresis. Six strains were allotted to the species Enterococcus faecium, four to E. faecalis, one to E. hirae; the remaining strains were not classed. The strains were sensitive to vancomycin, ampicillin, tetracycline and rifampicin. They were able to adhere to human as well as canine intestinal mucus. They produced lactic acid (0.99–1.04 mmol/L) and most of them were urease-positive with sufficient survival in 5 % Oxgall-bile. They did not show any inhibitory activity due to antimicrobial substances. Plasmid DNA was detected in 8 strains, the bands responding to small molecular size (10 kbp). Considering all probiotically important properties, E. faecium strain EE3 was suggested as potential feed additive.


Lactobacillus Lactic Acid Bacterium Enterococcus Faecium Urease Activity Intestinal Mucus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Audisio M.C., Oliver G., Apella M.C.: Protective effect of Enterococcus faecium J96, a potential probiotic strain, on chicks infected with Salmonella pullorum. J.Food Protect.63, 1333–1337 (2000).Google Scholar
  2. Baele M., Baele P., Van Eechoutte M., Storms V., Butay P., De Vriese L., Verschraegen G., Gillis M., Haesebrouck F.: Application of tDNA-PCR for the identification of enterococci. J.Clin.Microbiol.38, 4201–4207 (2000).PubMedGoogle Scholar
  3. Belicová A., Krížkova L., Dobiás J., Krajčovič J., Ebringer L.: Synergic activity of selenium and probiotic bacterium Enterococcus faecium M74 against selected mutagens in Salmonella assay. Folia Microbiol.49, 301–306 (2004).CrossRefGoogle Scholar
  4. Belicová A., Križková L., Krajčovič J., Jurkovič D., Sojka M., Ebringer L., Dušinský R.: Antimicrobial susceptibility of Enterococcus species isolated from Slovak Bryndza cheese. Folia Microbiol.52, 115–119 (2007).CrossRefGoogle Scholar
  5. Biourge V., Vallet C., Levesque A., Sergheraert R., Chevalier S., Roberton J.L.: The use of probiotics in the diet of dogs. J.Nutr.128, S2730–S2732 (1998).Google Scholar
  6. Bomba A., Kastel R., Gancarciková S., Nemcová R., Herich R., Čižek M.: The effect of lactobacilli inoculation on organic acid levels in the mucosal film and the small intestine contents in gnotobiotic pigs. Berl.Muench.Tierarztl.Wchschr.109, 428–430 (1996).Google Scholar
  7. Cintas L.M., Casaus P., Havarstain L.V., Hernandez P.E., Nes I.F.: Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl.Environ.Microbiol.63, 4321–4330 (1997).PubMedGoogle Scholar
  8. Cook A.R.: Urease activity in the rumen of sheep and the isolation of ureolytic bacteria. J.Gen.Microbiol.92, 32–48 (1976).PubMedGoogle Scholar
  9. De Vriese L.A., Cruz Colque J.I., De Herdt P., Haesebrouck F.: Identification and composition of the tonsillar and anal enterococcal and streptococcal flora of dogs and cats. J.Appl.Bacteriol.73, 421–425 (1992).Google Scholar
  10. De Vriese L.A., Pot B.: The genera of lactic acid bacteria — the genus Enterococcus, pp. 327–367 in B.J.B. Wood, W.H. Holzapfel (Eds): The Lactic Acid Bacteria, Vol. 2. Blackie Academic, London 1995.Google Scholar
  11. De Vuyst L., Callewaert R., Pot B.: Characterization and antagonistic activity of Lactobacillus amylovorus DCE471 and large scale isolation of its bacteriocin amylovorin L471. Syst.Appl.Microbiol.19, 269–277 (1996).Google Scholar
  12. Ducluzeau R., Gouet P., Williams P.E.V.: Probiotics in ruminants, pp. 343–345 in J.P. Jouany (Ed.): Rumen Microbial Metabolism and Ruminant Digestion. National Institute for Agricultural Research (INRA), Paris 1991.Google Scholar
  13. Gilliland S.E., Walker D.K.: Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesteremic effect in humans. J.Diary Sci.73, 905–911 (1990).CrossRefGoogle Scholar
  14. Gomes D.A., Souza A.M.L., Lopes R.V., Nunes A.C., Nicoli J.R.: Comparison of antagonistic ability against enteropathogens by G+ and G anaerobic dominant components of human fecal microbiota. Folia Microbiol.51, 141–146 (2006).CrossRefGoogle Scholar
  15. Herman D.J., Gerding D.N.: Antimicrobial resistance among enterococci. Antimicrob.Agents Chemother.35, 1–4 (1991).PubMedGoogle Scholar
  16. Horosová K., Bujňáková D., Kmeť V.: Effect of lactobacilli on E. coli adhesion to Caco-2 cells in vitro. Folia Microbiol.51, 281–282 (2006).CrossRefGoogle Scholar
  17. Jack R. W., Tagg J.R., Ray B.: Bacteriocins of Gram-positive bacteria. Microbiol.Rev.59, 171–200 (1995).PubMedGoogle Scholar
  18. Jurkovič D., Križková L., Dušinský R., Belicová A., Sojka M., Krajčovič J., Ebringer L.: Identification and characterization of enterococci from Bryndza cheese. Lett.Appl.Microbiol.42, 553–559 (2006).PubMedGoogle Scholar
  19. Kirjavainen P.V., Ouwehand A.C., Isolauri E., Salminen S.: The ability of probiotic bacteria to bind to human intestinal mucus. FEMS Microbiol.Lett.167, 185–189 (1998).PubMedCrossRefGoogle Scholar
  20. Kokešová A., Frolová L., Kverka M., Sokol D., Rossmann P., Bártová J., Tlaskalová-Hogenová H.: Oral administration of probiotic bacteria (E. coli Nissle, E. coli O83, Lactobacillus casei) influences the severity of dextran-sodium-sulfate-induced colitis in BALB/c mice. Folia Microbiol.51, 478–484 (2006).CrossRefGoogle Scholar
  21. Lauková A.: Identification of ruminal enterococcal and streptococcal flora of sheep. J.Appl.Anim.Res.5, 63–71 (1994).Google Scholar
  22. Lauková A., Juriš P.: Distribution and characterization of Enterococcus species in municipal sewages. Microbios89, 73–80 (1997).PubMedGoogle Scholar
  23. Lauková A., Koniarová I.: Survey of urease activity in ruminal bacteria isolated from domestic and wild ruminants. Microbios84, 7–11 (1995).PubMedGoogle Scholar
  24. Lauková A., Kuncová M., Kmeť V.: Isolation of several conjugative plasmids of the rumen bacteria Enterococcus faecium. Biológia (Bratislava)45, 533–538 (1990).Google Scholar
  25. Lauková A., Mareková M., Javorský P.: Detection and antimicrobial spectrum of a bacteriocin-like substance produced by Enterococcus faecium CCM 4231. Lett.Appl.Microbiol.16, 257–260 (1993).CrossRefGoogle Scholar
  26. Lauková A., Guba P., Nemcová R., Vasilková Z.: Reduction of Salmonella in gnotobiotic Japanese quails caused by the enterocin A-producing EK13 strain of Enterococcus faecium. Vet.Res.Commun.27, 275–280 (2003).PubMedCrossRefGoogle Scholar
  27. Lauková A., Strompfová V., Ouwehand A.: Adhesion properties of enterococci to intestinal mucus of different hosts. Vet.Res.Commun.28, 1–9 (2004).CrossRefGoogle Scholar
  28. Lauková A., Švec P., Strompfová V., Štětina V., Sedláček I.: Properties of the strains Enterococcus haemoperoxidus and E. moraviensis, new species among enterococci. Folia Microbiol.52, 273–280 (2007).CrossRefGoogle Scholar
  29. Marciňáková M.: Probiotic microorganisms in feed and in digestive tract of animals and their role in prevention. PhD Thesis. Institute of Animal Physiology of the Slovak Academy of Sciences, Košice (Slovakia) 2006.Google Scholar
  30. Marciňáková M., Strompfová V., Boldižárová K., Simonová M., Lauková A., Naď P.: Effect of potential probiotic Enterococcus faecium strains on selected microflora in turkeys. Czech J.Anim.Sci.50, 341–346 (2005).Google Scholar
  31. Marciňáková M., Simonová M., Strompfová V., Lauková A.: Oral application of Enterococcus faecium strain EE3 in healthy dogs. Folia Microbiol.51, 239–242 (2006).CrossRefGoogle Scholar
  32. Mareková M.: Genetic manipulation of the ruminal bacteria Streptococcus bovis. PhD Thesis. Institute of Animal Physiology of the Slovak Academy of Sciences, Košice (Slovakia) 1992.Google Scholar
  33. Mareková M., Laukova A., De Vuyst L., Skaugen M., Nes I.F.: Partial characterization of bacteriocins produced by environmental strain Enterococcus faecium EK13. J.Appl.Microbiol.94, 523–530 (2003).PubMedCrossRefGoogle Scholar
  34. Mego M., Májek J., Končeková R., Ebringer L., Čierniková S., Rauko P., Kováč M., Trupl J., Slezák P., Zajac V.: Intramucosal bacteria in colon cancer and their elimination by probiotic strain Enterococcus faecium M-74 with organic selenium. Folia Microbiol.50, 443–447 (2005).CrossRefGoogle Scholar
  35. Nemcová R.: Criteria for selection of lactobacilli for probiotic use. Vet.Med.Czech42, 19–27 (1997).Google Scholar
  36. Niemi R.M., Niemela S.I., Bamford D.H., Hantula J., Hyvarynen T., Forsten T., Raateland A.: Presumptive fecal streptococci in environmental samples characterized by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Appl. Environ.Microbiol.59, 2199–2196 (1993).Google Scholar
  37. Ott E. M., Mueller T., Mueller M., Franz C.M.P.A., Ulrich A., Gabel M., Seyfarth W.: Population dynamics and antagonistic potential of enterococci colonizing the phyllosphere of grasses. J.Appl.Microbiol.91, 54–66 (2001).PubMedCrossRefGoogle Scholar
  38. Ouwehand A.C., Kirjavainen P.V., Gronlund M.M., Isolauri E., Salminen S.: Adhesion of probiotic microorganisms to intestinal mucus. Internat.Dairy J.9, 623–630 (1999).CrossRefGoogle Scholar
  39. Ouwehand A.C., Salminen S., Tolkko S., Roberts P., Ovaska J., Salminen E.: Resected human colonic tissue: new model for characterizing adhesion on lactic acid bacteria. Clin.Diagn.Lab.Immunol.9, 184–186 (2002).PubMedCrossRefGoogle Scholar
  40. Pantev A., Kabadjova P., Dalgalarrondo M., Haertlé T., Ivanova I., Dousset X., Prévost H., Chobert J.-M.: Isolation and partial characterization of an antibacterial substance produced by Enterococcus faecium. Folia Microbiol.47, 391–400 (2002).CrossRefGoogle Scholar
  41. Pryce J.D.: A modification of the Barker-Summerson method for the determination of lactic acid. Analyst94, 1151–1152 (1969).PubMedCrossRefGoogle Scholar
  42. Rinkinen M., Matto J., Salminen S., Westermarck E., Ouwehand A.C.: In vitro adhesion of lactic acid bacteria to canine small intestinal mucus. J.Anim.Physiol.Anim.Nutr.84, 43–47 (2000).CrossRefGoogle Scholar
  43. Rinkinen M., Westermarck E., Salminen S., Ouwehand A.C.: Absence of host specificity for in vitro adhesion of probiotic lactic acid bacteria to intestinal mucus. Vet.Microbiol.97, 55–61 (2003).PubMedCrossRefGoogle Scholar
  44. Salminen S., Laine M., XXXvon Wright B., Vuopio-Varkila J., Korhonen T., Mattila-Sandholm T.: Development of selection criteria for probiotic strains to assess their potential in functional foods: a Nordic and European approach. Biosci.Microflora15, 61–67 (1996).Google Scholar
  45. Salminen S., Ouwehand A., Benno Y., Lee Y.K.: Probiotics: how should they be defined? Trends Food Sci.Technol.10, 107–110 (1999).CrossRefGoogle Scholar
  46. Saxelin M., Grenov B.M., Svensson U., Fondén R., Reniero R., Mattila-Sandholm T.: The technology of probiotics. Trends Food Sci.Technol.10, 387–392 (1999).CrossRefGoogle Scholar
  47. Simon O., Jadamus A., Vahjen W.: Probiotic feed additives-effectiveness and expected modes of action. J.Anim.Feed Sci.10, 51–67 (2001).Google Scholar
  48. Simonová M., Lauková A., Štyriak I.: Enterococci from rabbits — potential feed additive. Czech J.Anim.Sci.50, 416–421 (2005).Google Scholar
  49. Štětina V., Lauková A., Strompfová V., Švec P., Sedláček I.: Identification of Staphyloccoccus piscifermentas from dog feces. Folia Microbiol.50, 524–528 (2005).CrossRefGoogle Scholar
  50. Strompfová V., Lauková A., Ouwehand A.C.: Lactobacilli and enterococci — potential probiotics for dogs. Folia Microbiol.49, 203–207 (2004a).CrossRefGoogle Scholar
  51. Strompfová V., Lauková A., Ouwehand A.C.: Selection of enterococci for potential canine probiotic additives. Vet.Microbiol.100, 107–114 (2004b).PubMedCrossRefGoogle Scholar
  52. Strompfová V., Marciňáková M., Simonová, M., Bogovič-Matijašič B., Lauková A.: Application of potential probiotic Lactobacillus fermentum AD1 strain to healthy dogs. Anaerobe12, 75–79 (2006).PubMedCrossRefGoogle Scholar
  53. Švec P., Devriese L.A., Sedláček I., Baele M., Vancanneyt M., Haesebrouck F., Swings J.D., Doškař J.: Enterococcus haemoperoxidus sp.nov. and Ent. moraviensis sp.nov., isolated from water. Internat.J.Syst.Evol.Microbiol.51, 1567–1574 (2001).Google Scholar
  54. Trebichavský I., Šplíchal I.: Probiotics manipulate host cytokine response and induce antimicrobial peptides. Folia Microbiol.51, 507–510 (2006).CrossRefGoogle Scholar
  55. Vahjen W., Männer K.: The effect of a probiotic Enterococcus faecium product in diets of healthy dogs on bacteriological counts of Salmonella spp., Campylobacter spp. and Clostridium spp. in feces. Arch.Anim.Nutr.57, 229–233 (2003.CrossRefGoogle Scholar
  56. Welsh J., McClelland M.: Genomic fingerprints produced by PCR with consensus tRNA gene primers. Nucl.Acids Res.19, 861–866 (1991).PubMedCrossRefGoogle Scholar
  57. Woodford N., Egelton C.M., Morrison D.: Comparison of PCR with phenotypic methods for the speciation of enterococci, pp. 405–407 in T. Horaud, A. Bouvet, R. Leclercq, H. de Montclos, M. Sicard (Eds): Streptococci and the Host. Plenum Press, New York 1997.Google Scholar

Copyright information

© Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic 2008

Authors and Affiliations

  • A. Lauková
    • 1
  • M. Marciňáková
    • 1
  • V. Strompfová
    • 1
  • A. C. Ouwehand
    • 2
  1. 1.Institute of Animal PhysiologySlovak Academy of SciencesKošiceSlovakia
  2. 2.Danisco InnovationKantvikFinland

Personalised recommendations