Skip to main content
Log in

Preparation and Performance of an Antibacterial Fiber Mat with High Breathability and Moisture Permeability Based on Electrospinning

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Antibacterial fiber mats play a crucial role in inhibiting the spread of bacteria and preventing bacterial transmission. While polytetrafluoroethylene (PTFE) exhibits excellent biological inertness, the lack of antibacterial properties in pure PTFE fiber mats has diminished their competitiveness. In this study, we developed an antibacterial fiber mat with high breathability and moisture permeability by introducing silver nanoparticles (Ag NPs) into a PTFE emulsion through electrospinning. In this study, five sets of concentration gradients from 1% to 5% were set up, and the comparison revealed that the best PTFE/Ag NPs composite fiber mat (PA fiber mat) performance was achieved at 3% Ag NPs concentration. Compared to PTFE fiber mats without Ag NPs loading and conventional expanded membranes (ePTFE), it demonstrated antibacterial rates of 97.1% against Escherichia coli (E. coli) and 97.0% against Staphylococcus aureus (S. aureus), a moisture permeability performance of 15,500 ± 304 g(m2·12h)−1, and excellent breathability. The fiber mat exhibited not only outstanding antibacterial capabilities but also a water contact angle of 137.6°, an elongation at break of approximately 260.92%, and a tensile strength of about 1.84 MPa. These properties offer great promise for PA fiber mats in antibacterial fabric applications including medical masks and protective clothing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The authors will supply the relevant data in response to reasonable requests.

References

  1. E.S. Kim, S.H. Kim, C.H. Lee, Macromol. Res. 18, 215 (2010)

    Article  CAS  Google Scholar 

  2. H. Shen, Y. Li, W. Yao, S. Yang, L. Yang, F. Pan, Z. Chen, X. Yin, Compos. B Eng. 222, 109042 (2021)

    Article  CAS  Google Scholar 

  3. R. Goyal, L.K. Macri, H.M. Kaplan, J. Kohn, J. Control. Release 240, 77 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. H. Basri, A.F. Ismail, M. Aziz, K. Nagai, T. Matsuura, M.S. Abdullah, B.C. Ng, Desalination 261, 264 (2010)

    Article  CAS  Google Scholar 

  5. D.G. Yu, M.Y. Teng, W.L. Chou, M.C. Yang, J. Membr. Sci. 225, 115 (2003)

    Article  CAS  Google Scholar 

  6. W. Chou, D. Yu, M. Yang, Polym. Adv. Technol. 16, 600 (2005)

    Article  CAS  Google Scholar 

  7. S. Liu, L. Xu, J. Yu, Y. Si, B. Ding, ACS Applied Polymer Materials 5, 1464 (2023)

    Article  CAS  Google Scholar 

  8. X. Chen, C. Dai, T. Zhang, P. Xu, W. Ke, J. Wu, M. Qiu, K. Fu, Y. Fan, Chem. Eng. J. 435, 134972 (2022)

    Article  CAS  Google Scholar 

  9. S. Feng, Z. Zhong, Y. Wang, W. Xing, E. Drioli, J. Membr. Sci. 549, 332 (2018)

    Article  CAS  Google Scholar 

  10. E.Y. Astakhov, A.A. Shutov, Tech. Phys. Lett. 33, 228 (2007)

    Article  CAS  Google Scholar 

  11. C. Su, J. Shih, M. Huang, C. Wang, W. Shih, Y. Liu, Fibers and Polymers 13, 698 (2012)

    Article  CAS  Google Scholar 

  12. T. Shyr, W. Chung, W. Lu, A. Lin, Eur. Polymer J. 72, 50 (2015)

    Article  CAS  Google Scholar 

  13. A. Ranjbarzadeh-Dibazar, P. Shokrollahi, J. Barzin, A. Rahimi, J. Membr. Sci. 470, 458 (2014)

    Article  CAS  Google Scholar 

  14. Y. Hu, Y. Shi, X. Cao, Y. Liu, S. Guo, J. Shen, Nano Energy 86, 106103 (2021)

    Article  CAS  Google Scholar 

  15. E. Dhanumalayan, G.M. Joshi, Advanced Composites and Hybrid Materials 1, 247 (2018)

    Article  CAS  Google Scholar 

  16. In "Meyler's Side Effects of Drugs (Sixteenth Edition)" (J. K. Aronson, Ed, pp. 872, Elsevier, Oxford, 2016.

  17. E. Cho, S.H. Kim, M. Kim, J. Park, S. Lee, Surf. Coat. Technol. 370, 18 (2019)

    Article  CAS  Google Scholar 

  18. S. Agarwal, A. Greiner, Polym. Adv. Technol. 22, 372 (2011)

    Article  CAS  Google Scholar 

  19. G. Yazgan, A.M. Popa, R.M. Rossi, K. Maniura-Weber, J. Puigmartí-Luis, D. Crespy, G. Fortunato, Polymer 66, 268 (2015)

    Article  CAS  Google Scholar 

  20. Y. Feng, T. Xiong, S. Jiang, S. Liu, H. Hou, RSC Adv. 6, 2425 (2016)

    Google Scholar 

  21. A. Raman, J.S. Jayan, B.D.S. Deeraj, A. Saritha, K. Joseph, Surf. Inter. 24, 101140 (2021)

    CAS  Google Scholar 

  22. Y. Liu, Y. Liu, Z. Bai, D. Wang, Y. Xu, Q. Li, J. Tissue Eng. Regen. Med. 16, 1163 (2022)

    Article  CAS  PubMed  Google Scholar 

  23. Z. Su, Q. Han, F. Zhang, X. Meng, B. Liu, Carbohyd. Polym. 230, 115635 (2020)

    Article  CAS  Google Scholar 

  24. J. Lin, X. Chen, C. Chen, J. Hu, C. Zhou, X. Cai, W. Wang, C. Zheng, P. Zhang, J. Cheng, Z. Guo, H. Liu, ACS Appl. Mater. Interfaces 10, 6124 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. R. Zhang, W. Xu, F. Jiang, Fibers and Polymers 13, 571 (2012)

    Article  CAS  Google Scholar 

  26. N. Wang, S. Ji, J. Li, R. Zhang, G. Zhang, J. Membr. Sci. 455, 113 (2014)

    Article  CAS  Google Scholar 

  27. L. Wang, B. Zhou, Z. Bi, C. Wang, L. Zheng, H. Niu, P. Cui, D. Wang, Q. Li, Sep. Purif. Technol. 299, 121661 (2022)

    Article  CAS  Google Scholar 

  28. H. Liu, J. Huang, B. Guo, Materials 16, 4831 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A. Huang, F. Liu, Z. Cui, H. Wang, X. Song, L. Geng, H. Wang, X. Peng, Compos. Sci. Technol. 214, 108980 (2021)

    Article  CAS  Google Scholar 

  30. H. Cao, X. Liu, WIREs Nanomed. Nanobiotechnol. 2, 670 (2010)

    Article  CAS  Google Scholar 

  31. None, SPI, 16, 77 (1983).

  32. P. Shi, H. Sun, H. Zhang, S. Li, S. Liang, Y. Lv, G. Wang, Appl. Surf. Sci. 622, 156929 (2023)

    Article  CAS  Google Scholar 

  33. W. Zhao, H. Lu, C. Li, Int. J. Heat Mass Transf. 181, 121832 (2021)

    Article  Google Scholar 

  34. M. Xia, Z. Yao, Z. Xiong, Y. Wu, P. Cheng, Q. Cheng, J. Xu, X. Wang, K. Liu, D. Wang, Adv. Mater. Interfaces 10, 2201952 (2023)

    Article  CAS  Google Scholar 

  35. M. Meena, A. Kerketta, M. Tripathi, P. Roy, J. Jacob, J. Ind. Text. 51, 6110S (2022)

    Article  CAS  Google Scholar 

  36. Y. Xia, L. He, J. Feng, S. Xu, L. Yao, G. Pan, Nanomaterials 12, 1813 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. L.O. Lamke, G.E. Nilsson, H.L. Reithner, Burns 3, 159 (1977)

    Article  Google Scholar 

  38. Y.H. Kim, D.K. Lee, H.G. Cha, C.W. Kim, Y.S. Kang, J. Phys. Chem. C 111, 3629 (2007)

    Article  CAS  Google Scholar 

  39. Y. Pan, Z. Yu, H. Shi, Q. Chen, G. Zeng, H. Di, X. Ren, Y. He, J. Chem. Technol. Biotechnol. 92, 562 (2017)

    Article  CAS  Google Scholar 

  40. O. Choi, Z. Hu, Environ. Sci. Technol. 42, 4583 (2008)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors at Zhengzhou University would like to express their gratitude to the National Center for International Research of Micro-Nano Molding Technology of Zhengzhou University in China, the 2020 Zhengzhou Major Science and Technology Innovation Special Project (Grant Nos. 2020CXZX0057), Key R&D and Promotion Special Projects (Scientific Problem Tackling) in Henan Province of China (Grant No. 222102310593).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongfang Wang or Qian Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Liu, Y., Wang, D. et al. Preparation and Performance of an Antibacterial Fiber Mat with High Breathability and Moisture Permeability Based on Electrospinning. Fibers Polym 25, 2093–2106 (2024). https://doi.org/10.1007/s12221-024-00577-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-024-00577-6

Keywords

Navigation