Skip to main content
Log in

Analysis of Hydrothermal Aging Water of Fire-Protective Fabrics Using GC × GC–TOFMS and FID

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Many characteristics contribute to the effectiveness of textile products. For fire-protective fabrics, maintaining the physical integrity and protective properties over time is incredibly important. This fabric integrity can be affected as a result of chemical changes resulting from exposure to service conditions, for example water splashes and immersion. This study investigates the chemical components that were found in the hydrothermal aging water of 11 fire-protective fabrics subjected to water immersion at 90 °C for up to 50 days. Two techniques based on two-dimensional gas chromatography were used. Two-dimensional gas chromatography–time-of-flight mass spectrometry (GC × GC–TOFMS) was employed for comprehensive non-targeted qualitative analysis (NTA) while the quantification of compounds was performed with two-dimensional gas chromatography–flame ionization detection (GC × GC–FID). A total of 276 unique compounds of interest were identified in the aging water of the fabrics. Several of them were successfully traced to their purpose in textile manufacturing and would indicate the decomposition of the high-performance fibers making the fabrics, leaching of dyes and pigments, and/or degradation of the fabric finish. The knowledge generated during this study, both in terms of the extraction and analysis protocol and evidence of the degradation processes, is invaluable information for advancing the understanding of the aging of fire-protective fabrics and enhancing the safety of firefighters and others exposed to heat and flame.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data are available from the corresponding author upon reasonable request.

References

  1. A. Shaid, L. Wang, R. Padhye, Firefighters’ Clothing and Equipment: Performance, Protection, and Comfort, 1st edn. (Taylor & Francis, New York, 2018), pp.01–29

    Book  Google Scholar 

  2. S. Mandal, S. Gaan, M. Camenzind, S. Annaheim, R.M. Rossi, Thermal Analysis of Textiles and Fibers (Woodhead Publishing, Cambridge, 2020), pp.355–387. https://doi.org/10.1016/B978-0-08-100572-9.00021-5

    Book  Google Scholar 

  3. S. Rebouillat, High-Performance Fibres, 1st edn. (Woodhead Publishing, Cambridge, 2001), pp.23–61

    Book  Google Scholar 

  4. G. Bhat, Structure and Properties of High-Performance Fibers (Woodhead Publishing, Cambridge, 2017), pp.1–4. https://doi.org/10.1016/B978-0-08-100550-7.00001-2

    Book  Google Scholar 

  5. J.W. Gooch, Encyclopedic Dictionary of Polymers (Springer, New York, 2011), pp.562–562

    Google Scholar 

  6. A.R. Horrocks, H. Eichhorn, H. Schwaenke, N. Saville, C. Thomas, High-Performance Fibres, 1st edn. (Woodhead Publishing, Cambridge, 2001), pp.281–324

    Book  Google Scholar 

  7. F. Sloan, Structure and Properties of High-Performance Fibers (Woodhead Publishing, Cambridge, 2017), pp.113–140. https://doi.org/10.1016/B978-0-08-100550-7.00005-X

    Book  Google Scholar 

  8. M. Knop, Trends for firefighters: red, more than just a popular colour. (Tencate Prot. Fabr. 2020). https://eu.tencatefabrics.com/blog/trends-for-firefighters-red-more-than-just-a-popular-colour. Accessed 17 Feb 2023.

  9. R.M. Spayne, Why do wildland firefighters wear yellow? (Fire Buy. Int., 2022). https://firebuyer.com/why-do-wildland-firefighters-wear-yellow/. Accessed 17 Feb 2023.

  10. E.A. Manyukov, S.F. Sadova, N.N. Baeva, V.A. Platonov, Fibre Chem. 37, 54 (2005). https://doi.org/10.1007/s10692-005-0053-1

    Article  CAS  Google Scholar 

  11. M. Morris, X.P. Ye, C.J. Doona, Polymers 13, 1492 (2021). https://doi.org/10.3390/polym13091492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. B.L. Kaul, Synthetic Fibre Dyeing (West Yorkshire, Bradford, 2004), p.230

    Google Scholar 

  13. Kevlar®Aramid Fiber Technical Guide (DuPont, 2019). https://www.dupont.com/news/kevlar-properties.html. Accessed 12 Mar 2020.

  14. Technora- an outstanding para-aramid combining unique properties (Teijin, n.d.). https://pdf.nauticexpo.com/pdf/teijin-aramid-bv/outstanding-para-aramid-combining-unique-properties/30430-111463.html. Accessed 17 Feb 2023.

  15. M.S. Hoque, P.I. Dolez, J. Appl. Polym. Sci. 140(32), e54255 (2023). https://doi.org/10.1002/app.54255

    Article  CAS  Google Scholar 

  16. M. McQuerry, S. Klausing, D. Cotterill, E. Easter, Fire Technol. 51, 1149 (2015). https://doi.org/10.1007/s10694-014-0446-x

    Article  Google Scholar 

  17. M.L. Cinnamon, Post use analysis of firefighter turnout gear-phase III, Masters Thesis, University of Kentucky, Lexington, Kentucky, USA, 2013

  18. D.G. Cotterill, Post use analysis of firefighter turnout gear-phase I, Masters Thesis, University of Kentucky, Lexington, Kentucky, USA, 2009

  19. S.L. Trenkamp, Post use analysis of firefighters turnout gear-phase II, Masters Thesis, University of Kentucky, Lexington, Kentucky, USA, 2011

  20. T.L. Vogelpohl, Post use evaluation of firefighters turnout coat, Masters Thesis, University of Kentucky, Lexington, Kentucky, USA, 1996

  21. M. Rezazadeh, Evaluation of performance of in-use firefighters’ protective clothing using on-destructive tests, PhD Thesis. University of Saskatchewan. Saskatoon, SK, 2014

  22. M.S. Hoque, A. Saha, H.J. Chung, P.I. Dolez, J. Appl. Polym. Sci. 139(30), e52666 (2022). https://doi.org/10.1002/app.52666

    Article  CAS  Google Scholar 

  23. C. Arrieta, É. David, P.I. Dolez, T. Vu-Khanh, Polym. Degrad. Stab. 96, 8 (2011). https://doi.org/10.1016/j.polymdegradstab.2011.05.015

    Article  CAS  Google Scholar 

  24. J. Chin, A. Forster, C. Clerici, L. Sung, M. Oudina, K. Rice, Polym. Degrad. Stab. 92, 7 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.03.030

    Article  CAS  Google Scholar 

  25. I. Dolez, Y. Malajati, Performance of Protective Clothing and Equipment: Innovative Solutions to Evolving Challenges (ASTM International, West Conshohocken, 2020), pp.100–113. https://doi.org/10.1520/STP162420190079

    Book  Google Scholar 

  26. K. Slater, Text. Prog. 21, 1 (1991). https://doi.org/10.1080/00405169108688851

    Article  Google Scholar 

  27. X. Yang, C. Wang, H. Shao, Q. Zheng, Sci. Total. Environ. 694, 133494 (2019). https://doi.org/10.1016/j.scitotenv.2019.07.300

    Article  CAS  PubMed  Google Scholar 

  28. X. Gao, P. Huang, Q. Huang, K. Rao, Z. Lu, Y. Xu, G.W. Gabrielsen, I. Hallanger, M. Ma, Z. Wang, Environ. Pollut. 253, 1 (2019). https://doi.org/10.1016/j.envpol.2019.06.094

    Article  CAS  PubMed  Google Scholar 

  29. D. Schemeth, N.J. Nielsen, J.T. Andersson, J.H. Christensen, Chemosphere 235, 175 (2019). https://doi.org/10.1016/j.chemosphere.2019.06.149

    Article  CAS  PubMed  Google Scholar 

  30. R. Avagyan, M. Åberg, R. Westerholm, Chemosphere 163, 313 (2016). https://doi.org/10.1016/j.chemosphere.2016.08.039

    Article  CAS  PubMed  Google Scholar 

  31. J. Beens, J. Blomberg, P.J. Schoenmakers, J. High Resolut. Chromatogr. 23, 182 (2000). https://doi.org/10.1002/(SICI)1521-4168(20000301)23:3%3c182::AID-JHRC182%3e3.0.CO;2-E

    Article  CAS  Google Scholar 

  32. D.M. Mazur, T.B. Latkin, D.S. Kosyakov, A.Y. Kozhevnikov, N.V. Ulyanovskii, A.G. Kirilov, A.T. Lebedev, Environ. Pollut. 265, 114885 (2020). https://doi.org/10.1016/j.envpol.2020.114885

    Article  CAS  PubMed  Google Scholar 

  33. T.A. Johnson, M.D.S. Armstrong, A.P. de la Mata, J.J. Harynuk, J. Chromatogr. Open 2, 100070 (2022). https://doi.org/10.1016/j.jcoa.2022.100070

    Article  Google Scholar 

  34. M. Rezaee, Y. Assadi, M.R.M. Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, J. Chromatogr. A (2006). https://doi.org/10.1016/j.chroma.2006.03.007

    Article  PubMed  Google Scholar 

  35. A.T. James, A.J. Martin, Biochem. J. 50, 679 (1952). https://doi.org/10.1042/bj0500679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Z. Wang, M. Fingas, J. Chromatogr. A 774, 51 (1997). https://doi.org/10.1016/S0021-9673(97)00270-7

    Article  CAS  Google Scholar 

  37. K.D. Nizio, T.M. McGinitie, J.J. Harynuk, J. Chromatogr. A 1255, 12 (2012). https://doi.org/10.1016/j.chroma.2012.01.078

    Article  CAS  PubMed  Google Scholar 

  38. A.M. Muscalu, T. Górecki, TrAC Trends Anal. Chem. 106, 225 (2018). https://doi.org/10.1016/j.trac.2018.07.001

    Article  CAS  Google Scholar 

  39. Q. Guo, X. Li, J. Yu, H. Zhang, Y. Zhang, M. Yang, N. Lu, D. Zhang, Anal. Methods 7, 2458 (2015). https://doi.org/10.1039/C4AY03026E

    Article  CAS  Google Scholar 

  40. D.C. Harris, C.A. Lucy, Quantitative Chemical Analysis, 10th edn. (W.H. Freeman, New York, 2020)

    Google Scholar 

  41. N.J. Abbott, S. Schulman, J. Ind. Text. 6, 1 (1976). https://doi.org/10.1177/152808377600600

    Article  Google Scholar 

  42. J.X. Chan, A. Hassan, J.F. Wong, K. Majeed, Encyclopedia of Materials: Plastics and Polymers (Elsevier, Amsterdam, 2022), pp.237–248

    Book  Google Scholar 

  43. W.D. Schindler, P.J. Hauser, Chemical Finishing of Textiles, 1st edn. (Woodhead Publishing Limited, Cambridge, 2004), pp.43–50

    Google Scholar 

  44. R.J. Farn, Chemistry and Technology of Surfactants (Blackwell Publishing Ltd, Oxford, 2006), pp.300–309

    Book  Google Scholar 

  45. Y. Yang, J. Yu, H. Xu, B. Sun, Porous Lightweight Composites Reinforced with Fibrous Structures (Springer, Berlin, 2017)

    Book  Google Scholar 

  46. K.L. Hatch, H.I. Maibach, Handbook of Occupational Dermatology (Springer, Berlin, 2000), pp.622–636

    Book  Google Scholar 

  47. Teijin Ltd, Method for producing aramid fiber, JP3187226B2 (13 December 1993)

  48. M. Jaffe, A.J. East, Handbook of Fiber Chemistry, 3rd edn. (Taylor & Francis, Boca Raton, 2007), pp.1–30

    Google Scholar 

  49. R. Avagyan, G. Luongo, G. Thorsén, C. Östman, Environ. Sci. Pollut. Res. 22, 5842 (2015). https://doi.org/10.1007/s11356-014-3691-0

    Article  CAS  Google Scholar 

  50. K.T. Chung, J. Environ. Sci. Heal. Part C 34, 233 (2016). https://doi.org/10.1080/10590501.2016.1236602

    Article  CAS  Google Scholar 

  51. C. Liao, U.J. Kim, K. Kannan, Environ. Sci. Technol. 52, 5007 (2018). https://doi.org/10.1021/acs.est.7b05493

    Article  CAS  PubMed  Google Scholar 

  52. S. Benkhaya, S. M’rabet, A. El Harfi, Heliyon 6, e03271 (2020). https://doi.org/10.1016/j.heliyon.2020.e03271

    Article  PubMed  PubMed Central  Google Scholar 

  53. R. Saranya, J. Jayapriya, A. Tamilselvi, Color. Technol. 128, 440 (2012). https://doi.org/10.1111/j.1478-4408.2012.00397.x

    Article  CAS  Google Scholar 

  54. PubChem, Natl. Libr. Med. Natl. Cent. Biotechnol. Inf. (2005). https://pubchem.ncbi.nlm.nih.gov/compound/2_4-Diisocyanato-1-methylbenzene.

  55. T. Heidenfelder, J. Detering, G. Wagenblast, Method for providing textile material with UV protection, 20040074012 (6 Aug 2003)

  56. H.M. Fahmy, H.M.Y. Okda, M.H. El-Rafie, A.G. Hassabo, M.A. Youssef, Egypt. J. Chem. 65, 499 (2022). https://doi.org/10.21608/ejchem.2021.89016.4275

    Article  Google Scholar 

  57. Environment Canada and Health Canada, Aromatic Azo- and Benzidine-Based Substances (2012). https://www.canada.ca/en/health-canada/services/chemical-substances/substance-groupings-initiative/aromatic-azo-benzidine-based.html. Accessed 12 Feb 2023.

  58. J. Liang, X.-A. Ning, M. Kong, D. Liu, G. Wang, H. Cai, J. Sun, Y. Zhang, X. Lu, Y. Yuan, Environ. Pollut. 231, 115 (2017). https://doi.org/10.1016/j.envpol.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  59. M.S. Hoque, P.I. Dolez, in 10th Eur. Conf. Prot. Clothing. Prot. Challenges a Chang. World. 9–12 May 2023, Arnhem, Netherlands, edited by K. Kuklane and C. Mertens (Arnhem, 2023), pp. 108–109. https://doi.org/10.7939/r3-nfnj-pw50

  60. G. Derombise, E. Chailleux, B. Forest, L. Riou, N. Lacotte, L. Vouyovitch Van Schoors, P. Davies, Polym. Eng. Sci. 51, 1366 (2011). https://doi.org/10.1002/pen.21922

    Article  CAS  Google Scholar 

  61. A.C. Kogawa, B.G. Cernic, L.G.D.D. Couto, H.R.N. Salgado, Saudi Pharm. J. 25, 934 (2017). https://doi.org/10.1016/j.jsps.2017.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  62. R.J. Chudgar, Kirk-Othmer Encycl. Chem. Technol. (2000). https://doi.org/10.1002/0471238961.01261503082104.a01

    Article  Google Scholar 

  63. S. Houshyar, R. Padhye, S. Ranjan, S. Tew, R. Nayak, J. Ind. Text. 48, 77 (2018). https://doi.org/10.1177/1528083717725112

    Article  CAS  Google Scholar 

  64. REIMA, Manufacturing Restricted Substance List (2022). https://assets.ctfassets.net/u9gy9w9wtdqj/6aboDrzVyLHiiBH40ek88j/4637a69dfcd89b73be246e75b6502aff/20220207_Reima_Restricted_Substance_List_RRSL_incl._bluesign.pdf. Accessed 12 Feb 2023.

  65. Canada Ministry of Environment and Health, Screening Assessment for TDIs (2008). https://www.ec.gc.ca/ese-ees/default.asp?lang=En&n=69A64ACA-1. Accessed 12 Feb 2023.

Download references

Acknowledgements

This project has received the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) [STPGP 521866-18 and RGPIN-2019-5583]. The authors also want to acknowledge the support provided by the Protective Clothing and Equipment Research Facility (PCERF) in the Human Ecology Department and the University of Alberta Department of Chemistry. They would like to thank Innotex and DuPont for graciously providing the fabrics used in the study.

Funding

This article is funded by Natural Sciences and Engineering Research Council of Canada, STPGP 521866, Patricia I Dolez, RGPIN-2019-5583, Patricia I Dolez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia I. Dolez.

Ethics declarations

Conflict of Interest

Authors have no conflict of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4442 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoque, M.S., Johnson, T., de la Mata, P. et al. Analysis of Hydrothermal Aging Water of Fire-Protective Fabrics Using GC × GC–TOFMS and FID. Fibers Polym 25, 1925–1948 (2024). https://doi.org/10.1007/s12221-024-00540-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-024-00540-5

Keywords

Navigation