Skip to main content
Log in

In Situ Growth of Cu-BTC on Polypropylene for High-Efficiency Antibacterial Air Filters

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In many countries and regions, air pollution has become an environmental problem that cannot be ignored. Therefore, air filters with high efficiency, low resistance and strong antibacterial activity should be developed. In this study, carboxymethyl chitosan was impregnated on the surface of PP melt-blown layer to enhance the adsorption of copper ions on PP non-woven fabric. The porous nanomaterial Cu-BTC nanoparticles were loaded on the fibre surface of PP non-woven fabric by in-situ growth method. The micro–nano-composite membrane was prepared by electrospinning TPU on the surface of PP@Cu-BTC. The micro–nano-composite membrane could capture PM2.5 efficiently, and the filtration efficiency of PM2.5 particles was 97.7%. The composite membrane also exhibited excellent antibacterial properties. The inhibition rate of the composite membrane to Staphylococcus aureus and Escherichia coli reached 99.9%. In addition, the composite membrane demonstrated strong stability, and the corresponding inhibition rate did not decrease after washing and drying five times. The membrane featured high-efficiency filtration, excellent antibacterial performance and stability. The PP@Cu-BTC/TPU composite membrane provides a new idea for preparing stable, efficient and antibacterial air filtration membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Z. Shao, G. Kang, J. Xie, R. Shen, H. Li, Z. Zeng, J. Jiang, X. Wang, W. Li, S.J.S. Guo, P. Technol. 327, 124920 (2023)

    CAS  Google Scholar 

  2. R. Shen, Z. Shao, J. Xie, H. Li, Z. Zeng, J. Jiang, X. Wang, W. Li, Y. Liu, S. Guo, ACS Appl. Polym. Mater. 5, 8559 (2023)

    Article  CAS  Google Scholar 

  3. Z. Shao, R. Shen, Z. Gui, J. Xie, J. Jiang, X. Wang, W. Li, S. Guo, Y. Liu, G. Zheng, J. Biol. Macromol. 254, 127862 (2024)

    Article  CAS  Google Scholar 

  4. J.S. Apte, J.D. Marshall, A.J. Cohen, M. Brauer, Environ. Sci. Technol. 49, 8057 (2015)

    Article  CAS  PubMed  Google Scholar 

  5. W.Q. Xu, S.P. Wang, L.P. Jiang, X.C. Sun, N.N. Wang, X.F. Liu, X.F. Yao, T.M. Qiu, C. Zhang, J. Li, H.Y. Deng, G. Yang, Hum. Exp. Toxicol. 41, 9 (2022)

    Google Scholar 

  6. J. Sanchez-Pinero, N. Novo-Quiza, C. Pernas-Castano, J. Moreda-Pineiro, S. Muniategui-Lorenzo, P. Lopez-Mahia, Environ. Pollut. 307, 12 (2022)

    Article  Google Scholar 

  7. G.L. Liu, M.X. Xiao, X.X. Zhang, C. Gal, X.J. Chen, L. Liu, S. Pan, J.S. Wu, L. Tang, D. Clements-Croome, Sustain. Cities Soc. 32, 375 (2017)

    Article  Google Scholar 

  8. G. Berry, I. Beckman, H.J. Cho, J. Aerosol Sci. 167, 34 (2023)

    Article  Google Scholar 

  9. X. M. Zhu, Z. J. Dai, K. L. Xu, Y. Zhao, and Q. F. Ke, Macromol. Mater. Eng. 304 (2019).

  10. J. Shi, Y.Z. Zou, J.X. Wang, X.F. Zeng, G.W. Chu, B.C. Sun, D. Wang, J.F. Chen, Ind. Eng. Chem. Res. 60, 1962 (2021)

    Article  CAS  Google Scholar 

  11. C.B. Overgaard, R.A. van den Broek, J.H. Kim, A.S. Detsky, J. Investig. Med. 48, 118 (2000)

    CAS  PubMed  Google Scholar 

  12. H. Limbri, C. Gunawan, B. Rosche, J. Scott, Water Air Soil Pollut. 224, 15 (2013)

    Article  Google Scholar 

  13. R.S. Barhate, S. Ramakrishna, J. Membr. Sci. 296, 1 (2007)

    Article  CAS  Google Scholar 

  14. M.A. Abdulhamid, K.J.C. Muzamil, Chemosphere 310, 136886 (2023)

    Article  CAS  PubMed  Google Scholar 

  15. J.S. Wang, R.R. Cai, S.J. Wu, L.Z. Zhang, Chem. Eng. Sci. 265, 118237 (2023)

    Article  CAS  Google Scholar 

  16. H.M. Xiao, Y.P. Song, G.J. Chen, J. Electrostat. 72, 311 (2014)

    Article  CAS  Google Scholar 

  17. C.T. Zhang, J.X. Sun, S. Lyu, Z.Y. Lu, T. Li, Y. Yang, B. Li, H. Han, B.Y. Wu, H.Y. Sun, D.D. Li, J.T. Huang, D.Z. Sun, Adv. Compos. Hybrid Mater. 5, 1221 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. H. Zhang, Q. Zhen, Y. Liu, R.T. Liu, Y.F. Zhang, J. Eng. Fibers Fabr. 14, 155892501985079 (2019)

    Google Scholar 

  19. K. Singbumrung, K. Motina, P. Pisitsak, P. Chitichotpanya, S. Wongkasemjit, T. Inprasit, Fibers Polym. 19, 1373 (2018)

    Article  CAS  Google Scholar 

  20. W.L. Shao, J.L. Li, Y.T. Zhang, N. Sun, T. Wu, M.M. Yan, F. Liu, H.D. Jiang, X.G. Chen, J.X. He, J. Colloid Interface Sci. 628, 627 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Y.Y. Zhang, S. Yuan, X. Feng, H.W. Li, J.W. Zhou, B. Wang, J. Am. Chem. Soc. 138, 5785 (2016)

    Article  CAS  PubMed  Google Scholar 

  22. H. Shang, K. Xu, T. Li, H.-R. Yang, J. Gao, S. Li, J. Zhu, X. He, S. Zhang, H. Xu, J. Hazard. Mater. 458, 132010 (2023)

    Article  CAS  PubMed  Google Scholar 

  23. C. Wang, X. Song, T. Li, X. Zhu, S. Yang, J. Zhu, X. He, J. Gao, H. Xu, ACS Appl. Mater. Interfaces 15, 37580 (2023)

    Article  CAS  PubMed  Google Scholar 

  24. C. Liang, J. Li, Y. Chen, L. Ke, J. Zhu, L. Zheng, X.-P. Li, S. Zhang, H. Li, G.-J. Zhong, ACS Appl. Mater. Interfaces 15, 57636 (2023)

    CAS  Google Scholar 

  25. W.K. Zhang, T. Huang, Y. Ren, Y.L. Wang, R.J. Yu, J.Y. Wang, Q. Tu, Int. J. Biol. Macromol. 193, 2243 (2021)

    Article  CAS  PubMed  Google Scholar 

  26. X. J. Liu, M. M. Li, S. M. Yang, Y. Y. Yang, J. Nie, Y. B. Xue, Y. G. Ouyang, and S. T. Xiao, J. Chem. Sci. 134 (2022).

  27. Z.G. Wang, F.Y. Yin, X.F. Zhang, T.R. Zheng, J.F. Yao, Sep. Purif. Technol. 293, 121095 (2022)

    Article  CAS  Google Scholar 

  28. G.H. Huang, Y.M. Li, Z.M. Qin, Q. Liang, C.H. Xu, B.F. Lin, Carbohydr. Polym. 233, 115848 (2020)

    Article  CAS  PubMed  Google Scholar 

  29. Y. Bian, Z.L. Niu, S.J. Wang, Y. Pan, L. Zhang, C. Chen, ACS Appl. Mater. Interfaces 14, 23570 (2022)

    Article  CAS  Google Scholar 

  30. F. Topuz, M. H. Abdellah, P. M. Budd, and M. A. J. P. R. Abdulhamid, 1 (2023).

  31. F. Topuz, M.A. Abdulhamid, R. Hardian, T. Holtzl, G. Szekely, J. Hazard. Mater. 424, 127347 (2022)

    Article  CAS  PubMed  Google Scholar 

  32. G. Zhu, X. Li, X.-P. Li, A. Wang, T. Li, X. Zhu, D. Tang, J. Zhu, X. He, H. Li, ACS Appl. Mater. Interfaces 15, 47145 (2023)

    Article  CAS  PubMed  Google Scholar 

  33. C.X. Li, S.Y. Kuang, Y.H. Chen, Z.L. Wang, C.J. Li, G. Zhu, ACS Appl. Mater. Interfaces 10, 24332 (2018)

    Article  CAS  PubMed  Google Scholar 

  34. S.S. Ma, M.Y. Zhang, J.Y. Nie, J.J. Tan, B. Yang, S.X. Song, Carbohyd. Polym. 203, 415 (2019)

    Article  CAS  Google Scholar 

  35. A. Zirehpour, A. Rahimpour, A.A. Shamsabadi, G.M. Sharifian, M. Soroush, Environ. Sci. Technol. 51, 5511 (2017)

    Article  CAS  PubMed  Google Scholar 

  36. H. S. Rodriguez, J. P. Hinestroza, C. Ochoa-Puentes, C. A. Sierra, and C. Y. Soto, J. Appl. Polym. Sci. 131 (2014).

  37. M. Mozafari, S.F. Seyedpour, S.K. Salestan, A. Rahimpour, A.A. Shamsabadi, M.D. Firouzjaei, M.R. Esfahani, A. Tiraferri, H. Mohsenian, M. Sangermano, M. Soroush, J. Membr. Sci. 588, 117200 (2019)

    Article  CAS  Google Scholar 

  38. J.L. Zhuang, D. Ceglarek, S. Pethuraj, A. Terfort, Adv. Funct. Mater. 21, 1442 (2011)

    Article  CAS  Google Scholar 

  39. Y. Cheng, W. Wang, R.R. Yu, S.K. Liu, J. Shi, M.J. Shan, H.T. Shi, Z.W. Xu, H. Deng, Sep. Purif. Technol. 282, 120030 (2022)

    Article  CAS  Google Scholar 

  40. C.W. Lou, S. Li, Y. Fan, T.-T. Li, X. Liu, L. Liu, B.-C. Shiu, J.-H. Lin, J. Market. Res. 24, 9949 (2023)

    CAS  Google Scholar 

  41. L. Qiu, L.L. Wang, M.X. Zhang, M.J. Zhang, M.L. Wang, C.G. Yang, R. Li, G.Z. Wu, Microporous Mesoporous Mater. 292, 109723 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant number 11702187), 2021 Tianjin Postgraduate Research Innovation Project (Grant number 2021YJSB235) and Research Fund of China National Textile And Apparel Council (Grant number 2022033). Moreover, we would like to thank the Analytical and Testing Center of Tiangong University for the work related to surface morphology and chemical structure of composite fabric.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei-Chen Lin, Jia-Horng Lin or Ting-Ting Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Lin, MC., Liu, X. et al. In Situ Growth of Cu-BTC on Polypropylene for High-Efficiency Antibacterial Air Filters. Fibers Polym (2024). https://doi.org/10.1007/s12221-024-00536-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12221-024-00536-1

Keywords

Navigation