Skip to main content
Log in

A Sulfonic-Functionalized Cellulose Adsorbent for the Rapid Removal of Cerium (III) from Aqueous Solutions

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The biodegradable biomass adsorbent (cellulose-g-PSS) was synthesized in LiCl/N, N-dimethyl acetamide by the free-radical grafting polymerization reaction between sodium styrene sulfonate (SSS) and cellulose. Systematic optimization was conducted on many reaction parameters, including reaction time, monomer dosage, and reaction temperature. The grafting yield of cellulose-g-PSS was 50.16%. The chemical structures, physical, and chemical characteristics of cellulose-g-PSS were characterized by FTIR, SEM, PZC, 1H NMR, XRD, TGA and XPS. An assessment was conducted to determine the sorption of Ce (III) on cellulose-g-PSS by changing the contact time, adsorbent dosage, pH, initial Ce (III) concentration, and NaCl concentration. The process of adsorption rapidly reached a state of equilibrium within a time frame of 25 min and was well explained using pseudo-second-order kinetic and Langmuir isotherm model. The maximum adsorption capacity for Ce (III) obtained from the Langmuir isotherm model was 84.80 mg·g−1. The impact of NaCl concentration on the sorption of Ce (III) and XPS analysis showed that Ce (III) ions were adsorbed onto cellulose-g-PSS through ion-exchange mechanism. As a whole, cellulose-g-PSS exhibited great potential in rare earth wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9

Similar content being viewed by others

Data Availability

The data are available from the corresponding authors upon reasonable request.

References

  1. X. Li, Q. Zhou, H. Yang, Ind. Eng. Chem. Res. 59, 7746 (2020). https://doi.org/10.1021/acs.iecr.9b05793

    Article  CAS  Google Scholar 

  2. T. Shahnaz, V. Vishnu Priyan, A. Jayakumar, S. Narayanasamy, Chemosphere 287, 131912 (2022). https://doi.org/10.1016/j.chemosphere.2021.131912

    Article  CAS  PubMed  Google Scholar 

  3. R.F. Pinheiro, A. Grimm, M.L.S. Oliveira, J. Vieillard, L.F.O. Silva, I.A.S. De Brum, É.C. Lima, M. Naushad, L. Sellaoui, G.L. Dotto, G.S. dos Reis, Chem. Eng. J. 471, 144484 (2023). https://doi.org/10.1016/j.cej.2023.144484

    Article  CAS  Google Scholar 

  4. R. Mu, J. Chen, D. Zou, K. Li, D. Li, Sep. Purif. Technol. 209, 351 (2019). https://doi.org/10.1016/j.seppur.2018.07.008

    Article  CAS  Google Scholar 

  5. M. Li, Z. Ji, G. Sheng, S. Zhou, K. Chang, E. Jin, X. Guo, J. Mol. Liq. 322, 114940 (2021). https://doi.org/10.1016/j.molliq.2020.114940

    Article  CAS  Google Scholar 

  6. T. Rani Sethy, T. Biswal, P. Kumar Sahoo, Sep. Purif. Technol. 309, 122935 (2023). https://doi.org/10.1016/j.seppur.2022.122935

    Article  CAS  Google Scholar 

  7. Z. Chen, W. Wang, F. Sang, J. Xu, G. Luo, Y. Wang, Sep. Purif. Technol. 174, 352 (2017). https://doi.org/10.1016/j.seppur.2016.10.059

    Article  CAS  Google Scholar 

  8. Y. Cao, P. Shao, Y. Chen, X. Zhou, L. Yang, H. Shi, K. Yu, X. Luo, X. Luo, Resour.Conserv. Recycl. 169, 105519 (2021). https://doi.org/10.1016/j.resconrec.2021.105519

    Article  CAS  Google Scholar 

  9. J. Cui, F. Li, Y. Wang, Q. Zhang, W. Ma, C. Huang, Sep. Purif. Technol. 250, 117116 (2020). https://doi.org/10.1016/j.seppur.2020.117116

    Article  CAS  Google Scholar 

  10. C. Li, D.L. Ramasamy, M. Sillanpää, E. Repo, Sep. Purif. Technol. 254, 117442 (2021). https://doi.org/10.1016/j.seppur.2020.117442

    Article  CAS  Google Scholar 

  11. Y. Hao, Y. Cui, J. Peng, N. Zhao, S. Li, M. Zhai, Carbohydr. Polym. 208, 269 (2019). https://doi.org/10.1016/j.carbpol.2018.12.068

    Article  CAS  PubMed  Google Scholar 

  12. J.C. Callura, K.M. Perkins, C.W. Noack, N.R. Washburn, D.A. Dzombak, A.K. Karamalidis, Green Chem. 20, 1515 (2018). https://doi.org/10.1039/C8GC00051D

    Article  CAS  Google Scholar 

  13. M. Hermassi, M. Granados, C. Valderrama, N. Skoglund, C. Ayora, J.L. Cortina, J. Cleaner Prod. 379, 134742 (2022). https://doi.org/10.1016/j.jclepro.2022.134742

    Article  CAS  Google Scholar 

  14. S. Bao, Y. Wang, Z. Wei, W. Yang, Y. Yu, J. Hazard. Mater. 424, 127370 (2022). https://doi.org/10.1016/j.jhazmat.2021.127370

    Article  CAS  PubMed  Google Scholar 

  15. L. Zhao, M.R. Azhar, X. Li, X. Duan, H. Sun, S. Wang, X. Fang, J. Colloid Interf. Sci 542, 421 (2019). https://doi.org/10.1016/j.jcis.2019.01.117

    Article  CAS  Google Scholar 

  16. K. Nakasone, S. Ikematsu, T. Kobayashi, Ind. Eng. Chem. Res. 55, 30 (2016). https://doi.org/10.1021/acs.iecr.5b03926

    Article  CAS  Google Scholar 

  17. P. Wamea, M.L. Pitcher, J. Muthami, A. Sheikhi, Chem. Eng. J. 428, 131086 (2022). https://doi.org/10.1016/j.cej.2021.131086

    Article  CAS  Google Scholar 

  18. C. Zhou, Y. Wang, J. Appl. Polym. Sci. 138, 51255 (2021). https://doi.org/10.1002/app.51255

    Article  CAS  Google Scholar 

  19. V. Rychkov, E. Kirillov, S. Kirillov, G. Bunkov, M. Botalov, V. Semenishchev, D. Smyshlyaev, A. Malyshev, A. Taukin, A. Akcil, Sep. Purif. Rev. 51, 468 (2022). https://doi.org/10.1080/15422119.2021.1993255

    Article  CAS  Google Scholar 

  20. M.F. Hamza, E. Guibal, A.A.H. Abdel-Rahman, M. Salem, M.S. Khalafalla, Y. Wei, X. Yin, Molecules (2022). https://doi.org/10.3390/molecules27217562

    Article  PubMed  PubMed Central  Google Scholar 

  21. O. Ozer, A. Ince, B. Karagoz, N. Bicak, Desalination 309, 141 (2013). https://doi.org/10.1016/j.desal.2012.09.024

    Article  CAS  Google Scholar 

  22. Z. Sun, Y. Yin, Y. An, C. Deng, Z. Wei, Z. Jiang, X. Duan, X. Xu, J. Chen, J. Environ. Chem. Engin 10, 108179 (2022). https://doi.org/10.1016/j.jece.2022.108179

    Article  CAS  Google Scholar 

  23. Y. Hao, J. Qu, L. Tan, Z. Liu, Y. Wang, T. Lin, H. Yang, J. Peng, M. Zhai, Int. J. Biol. Macromol. 233, 123643 (2023). https://doi.org/10.1016/j.ijbiomac.2023.123643

    Article  CAS  PubMed  Google Scholar 

  24. H. Rohwer, E. Hosten, Anal. Chim. Acta 339, 271 (1997). https://doi.org/10.1016/S0003-2670(96)00471-0

    Article  CAS  Google Scholar 

  25. R.P. Swatloski, S.K. Spear, J.D. Holbrey, R.D. Rogers, J. Am. Chem. Soc. 124, 4974 (2002). https://doi.org/10.1021/ja025790m

    Article  CAS  PubMed  Google Scholar 

  26. W. Li, F. Zhang, W. Wang, Y. Li, Y. Liu, C. Lu, Z. Zhang, Cellulose 25, 4955 (2018). https://doi.org/10.1007/s10570-018-1923-z

    Article  CAS  Google Scholar 

  27. R.K. Sharma, R. Kumar, Int. J. Biol. Macromol. 134, 704 (2019). https://doi.org/10.1016/j.ijbiomac.2019.05.059

    Article  CAS  PubMed  Google Scholar 

  28. T.H. Kim, D.R. Oh, Polym. Degrad. Stab. 84, 499 (2004). https://doi.org/10.1016/j.polymdegradstab.2004.01.008

    Article  CAS  Google Scholar 

  29. K. Littunen, U. Hippi, L.-S. Johansson, M. Österberg, T. Tammelin, J. Laine, J. Seppälä, Carbohydr. Polym. 84, 1039 (2011). https://doi.org/10.1016/j.carbpol.2010.12.064

    Article  CAS  Google Scholar 

  30. H. Shi, C. Dong, Y. Yang, Y. Han, F. Wang, C. Wang, J. Men, Int. J. Biol. Macromol. 163, 2334 (2020). https://doi.org/10.1016/j.ijbiomac.2020.09.078

    Article  CAS  PubMed  Google Scholar 

  31. J. Lamaming, R. Hashim, C.P. Leh, O. Sulaiman, T. Sugimoto, M. Nasir, Carbohydr. Polym. 134, 534 (2015). https://doi.org/10.1016/j.carbpol.2015.08.017

    Article  CAS  PubMed  Google Scholar 

  32. T.T. Hong, H. Okabe, Y. Hidaka, B.A. Omondi, K. Hara, Polymer 181, 121772 (2019). https://doi.org/10.1016/j.polymer.2019.121772

    Article  CAS  Google Scholar 

  33. T.T. Hong, H. Okabe, Y. Hidaka, K. Hara, Environ. Pollut. 242, 1458 (2018). https://doi.org/10.1016/j.envpol.2018.07.129

    Article  CAS  PubMed  Google Scholar 

  34. E. Makhado, S. Pandey, P.N. Nomngongo, J. Ramontja, Carbohydr. Polym. 176, 315 (2017). https://doi.org/10.1016/j.carbpol.2017.08.093

    Article  CAS  PubMed  Google Scholar 

  35. F. Jiang, C. Pan, Y. Zhang, Y. Fang, Appl. Surf. Sci. 480, 162 (2019). https://doi.org/10.1016/j.apsusc.2019.02.210

    Article  CAS  Google Scholar 

  36. M. Nicolas, E. Beyou, M. Fumagalli, Eur. Polym. J. 152, 110455 (2021). https://doi.org/10.1016/j.eurpolymj.2021.110455

    Article  CAS  Google Scholar 

  37. R.-Y. Wang, S. Jeong, H. Ham, J. Kim, H. Lee, C.Y. Son, M.J. Park, Adv. Mater. 35, 2203413 (2023). https://doi.org/10.1002/adma.202203413

    Article  CAS  Google Scholar 

  38. Y. Wan, F. An, P. Zhou, Y. Li, Y. Liu, C. Lu, H. Chen, Chem. Commun. 53, 3595 (2017). https://doi.org/10.1039/C7CC00450H

    Article  CAS  Google Scholar 

  39. Y. Luan, J. Wu, M. Zhan, J. Zhang, J. Zhang, J. He, Cellulose 20, 327 (2013). https://doi.org/10.1007/s10570-012-9818-x

    Article  CAS  Google Scholar 

  40. N.A. Rosli, I. Ahmad, I. Abdullah, F.H. Anuar, F. Mohamed, Carbohydr. Polym. 125, 69 (2015). https://doi.org/10.1016/j.carbpol.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  41. R.K. Sharma, R. Kumar, A.P. Singh, Sep. Purif. Technol. 209, 684 (2019). https://doi.org/10.1016/j.seppur.2018.09.011

    Article  CAS  Google Scholar 

  42. E. Princi, S. Vicini, E. Pedemonte, A. Mulas, E. Franceschi, G. Luciano, V. Trefiletti, Thermochim. Acta 425, 173 (2005). https://doi.org/10.1016/j.tca.2004.07.001

    Article  CAS  Google Scholar 

  43. D. Roy, J.T. Guthrie, S. Perrier, Macromolecules 38, 10363 (2005). https://doi.org/10.1021/ma0515026

    Article  CAS  Google Scholar 

  44. M. Barsbay, O. Güven, T.P. Davis, C. Barner-Kowollik, L. Barner, Polymer 50, 973 (2009). https://doi.org/10.1016/j.polymer.2008.12.027

    Article  CAS  Google Scholar 

  45. M. Barsbay, O. Güven, M.H. Stenzel, T.P. Davis, C. Barner-Kowollik, L. Barner, Macromolecules 40, 7140 (2007). https://doi.org/10.1021/ma070825u

    Article  CAS  Google Scholar 

  46. I. Elsayed, G.T. Schueneman, E.M. El-Giar, E.B. Hassan, Gels (2023). https://doi.org/10.3390/gels9020154

    Article  PubMed  PubMed Central  Google Scholar 

  47. L.S. Silva, L.C.B. Lima, F.C. Silva, J.M.E. Matos, M.R.M.C. Santos, L.S. Santos Júnior, K.S. Sousa, E.C. da Silva Filho, Chem. Eng. J. 218, 89 (2013). https://doi.org/10.1016/j.cej.2012.11.118

    Article  CAS  Google Scholar 

  48. M.R. Awual, M.M. Hasan, A. Shahat, M. Naushad, H. Shiwaku, T. Yaita, Chem. Eng. J. 265, 210 (2015). https://doi.org/10.1016/j.cej.2014.12.052

    Article  CAS  Google Scholar 

  49. P. Bk, V. B, J. Environ. Chem. Engin 8, 103608 (2020). https://doi.org/10.1016/j.jece.2019.103608

    Article  CAS  Google Scholar 

  50. H. Aydın, Y. Bulut, Ç. Yerlikaya, J. Environ. Manag. 87, 37 (2008). https://doi.org/10.1016/j.jenvman.2007.01.005

    Article  CAS  Google Scholar 

  51. K. Nithya, A. Sathish, P. Senthil Kumar, T. Ramachandran, J. Ind. Eng. Chem. 59, 230 (2018). https://doi.org/10.1016/j.jiec.2017.10.028

    Article  CAS  Google Scholar 

  52. F. An, B. Gao, X. Dai, M. Wang, X. Wang, J. Hazard. Mater. 192, 956 (2011). https://doi.org/10.1016/j.jhazmat.2011.05.050

    Article  CAS  PubMed  Google Scholar 

  53. I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918). https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  54. H. Freundlich, Phys. Chem. 57U, 385 (1907). https://doi.org/10.1515/zpch-1907-5723

    Article  Google Scholar 

  55. Y. Lee, K. Yu, S. Ravi, W.-S. Ahn, ACS Appl. Mater. Interfaces 10, 23918 (2018). https://doi.org/10.1021/acsami.8b07130

    Article  CAS  PubMed  Google Scholar 

  56. Ó. Barros, L. Costa, F. Costa, A. Lago, V. Rocha, Z. Vipotnik, B. Silva, T. Tavares, Molecules (2019). https://doi.org/10.3390/molecules24061005

    Article  PubMed  PubMed Central  Google Scholar 

  57. R. Keçili, İ Dolak, B. Ziyadanoğulları, A. Ersöz, R. Say, J. Rare Earths 36, 857 (2018). https://doi.org/10.1016/j.jre.2018.02.008

    Article  CAS  Google Scholar 

  58. S. Iftekhar, V. Srivastava, M. Sillanpää, Chem. Eng. J. 309, 130 (2017). https://doi.org/10.1016/j.cej.2016.10.028

    Article  CAS  Google Scholar 

  59. X. Li, S. Liu, Z. Na, D. Lu, Z. Liu, Ecol. Eng. 60, 160 (2013). https://doi.org/10.1016/j.ecoleng.2013.07.039

    Article  CAS  Google Scholar 

  60. J. He, Y. Xu, P. Shao, L. Yang, Y. Sun, Y. Yang, F. Cui, W. Wang, Chem. Eng. J. 394, 124912 (2020). https://doi.org/10.1016/j.cej.2020.124912

    Article  CAS  Google Scholar 

  61. X. Yu, S. Tong, M. Ge, L. Wu, J. Zuo, C. Cao, W. Song, J. Environ. Sci. 25, 933 (2013). https://doi.org/10.1016/S1001-0742(12)60145-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by National Natural Science Foundation of China (NNSFC, No. 11965015 and 52164013), Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (No. NJYT22072), Fundamental Research Funds for Inner Mongolia University of Science & Technology, Outstanding Youth Fund Project of Innovation Fund of Inner Mongolia University of Science & Technology (No. 2019YQL05) and Inner Mongolia "Grassland Talents" Special Research Project.

Funding

National Natural Science Foundation of China,11965015,Yan Hao,Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region,NJYT22072, Yan Hao, Fundamental Research Funds for Inner Mongolia University of Science & Technology, Outstanding Youth Fund Project of Innovation Fund of Inner Mongolia University of Science & Technology, 2019YQL05, Yan Hao, Innovative Research Group Project of the National Natural Science Foundation of China, 52164013, Huazheng Sai.

Author information

Authors and Affiliations

Authors

Contributions

L.T.: writing-original draft preparation, data interpretation and experiments; X.B.: data interpretation and experiments; R.Y.: data interpretation; Z.F.: data interpretation; J.W.: data interpretation Y. W. helped in the management of equipment, research facilities and characterization of materials; T.L.: characterization of materials; Y.H.: conceptualization, methodology, writing—reviewing and editing, resources, supervision, funding acquisition; H.Y.: review and editing; H.Y.: review and editing; H.S.: funding acquisition, review and editing. All authors read and approved the published version of the article.

Corresponding author

Correspondence to Yan Hao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, L., Bai, X., Yao, R. et al. A Sulfonic-Functionalized Cellulose Adsorbent for the Rapid Removal of Cerium (III) from Aqueous Solutions. Fibers Polym (2024). https://doi.org/10.1007/s12221-024-00529-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12221-024-00529-0

Keywords

Navigation