Skip to main content
Log in

Using the Embedded Element Finite-Element Method to Simulate Impact of Dyneema® Plates

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The embedded finite-element technique provides a unique approach for modeling of fiber-reinforced composites. Meshing fibers as distinct bundles represented by truss elements embedded in a matrix material mesh allow for the assignment of more specific material properties for each component rather than homogenization of all the properties. This approach also allows for different damage and failure properties to be assigned the matrix and fiber materials which could provide new insight into the failure of the composite material, but also presents unique challenges in the implementation of the finite-element method. Here, we present a proof-of-concept model of a plate of Dyneema® under impact conditions using the embedded element method to represent the cross-ply fibers grouped into truss elements. We show that the embedded truss elements provide an easy way to implement the orthotropic material properties and transmit stress waves through the plate in a way that is consistent with images from experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are available within this article and from the corresponding author upon reasonable request.

Abbreviations

UHMWPE:

Ultra-high-molecular-weight polyethylene

References

  1. M.K. Hazzard, R.S. Trask, U. Heisserer, M. Van Der Kamp, S.R. Hallett, Compos. A Appl. Sci. Manuf. 115, 31 (2018)

    Article  CAS  Google Scholar 

  2. M.J.N. Jacobs, J.L.J. Van Dingenen, J. Mater. Sci. 36, 3137 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Y. Zhu, X. Zhang, B. Xue, H. Liu, Y. Wen, C. Xu, Appl. Sci. 10, 1505 (2020)

    Article  CAS  Google Scholar 

  4. D. Zhang, Y. Sun, L. Chen, S. Zhang, N. Pan, Mater. Design (1980–2015) 54, 315 (2014)

    Article  CAS  Google Scholar 

  5. B.G. Liu, H.N.G. Wadley, V.S. Deshpande, Int. J. Solids Struct. 178–179, 180 (2019)

    Article  Google Scholar 

  6. R.V. Raj, B.G. Liu, R.H.J. Peerlings, V.S. Deshpande, Mech. Mater. 164, 104106 (2022)

    Article  Google Scholar 

  7. Y. Li, H. Fan, X.-L. Gao, Compos. B Eng. 238, 109890 (2022)

    Article  CAS  Google Scholar 

  8. P. Hu, H. Yang, P. Zhang, W. Wang, J. Liu, Y. Cheng, Compos. Struct. 290, 115499 (2022)

    Article  CAS  Google Scholar 

  9. S.A. Tabatabaei, S.V. Lomov, Comput. Struct. 152, 142 (2015)

    Article  Google Scholar 

  10. H. Utomo, B. Deborah, P. R. Akkerman, B. H. Utomo, High-speed impact modelling and testing of dyneema composite Proefschrift Ter Verkrijging van de Graad van Doctor Aan de Technische Universiteit Delft, (2011)

  11. G. Mo, Q. Ma, Y. Jin, W. Yan, Z. Li, and Z. Wu, Defence Technol. S2214914720303317 (2020)

  12. A. Sharma, S. Daggumati, in Innovation, in Materials Science and Engineering. ed. by J. Chattopadhyay, R. Singh, O. Prakash (Springer Singapore, Singapore, 2019), pp.161–169

    Google Scholar 

  13. L.H. Nguyen, T.R. Lässig, S. Ryan, W. Riedel, A.P. Mouritz, A.C. Orifici, Compos. A Appl. Sci. Manuf. 84, 224 (2016)

    Article  CAS  Google Scholar 

  14. B.G. Liu, K. Kandan, H.N.G. Wadley, V.S. Deshpande, Int. J. Plast. 122, 115 (2019)

    Article  CAS  Google Scholar 

  15. S. D. Rajan, In: Lightweight Ballistic Composites (Elsevier, 2016), pp. 327–348

  16. Y. Wen, C. Xu, S. Wang, R.C. Batra, J. Mech. Behav. Biomed. Mater. 45, 11 (2015)

    Article  CAS  PubMed  Google Scholar 

  17. S. Chocron, A.E. Nicholls, A. Brill, A. Malka, T. Namir, D. Havazelet, H. van der Werff, U. Heisserer, J.D. Walker, Compos. Sci. Technol. 101, 32 (2014)

    Article  CAS  Google Scholar 

  18. T.A. Bogetti, M. Walter, J. Staniszewski, J. Cline, Compos. A Appl. Sci. Manuf. 98, 105 (2017)

    Article  CAS  Google Scholar 

  19. L. Iannucci, D. Pope, Express Polym Lett 5, 262 (2011)

    Article  Google Scholar 

  20. M. Grujicic, G. Arakere, T. He, W.C. Bell, B.A. Cheeseman, C.-F. Yen, B. Scott, Mater. Sci. Eng. A 498, 231 (2008)

    Article  Google Scholar 

  21. I. Lapczyk, J.A. Hurtado, Compos. A Appl. Sci. Manuf. 38, 2333 (2007)

    Article  Google Scholar 

  22. P.C. Chou, J. Carleone, C.M. Hsu, J. Compos. Mater. 6, 80 (1972)

    Article  ADS  Google Scholar 

  23. M.W. Joosten, M. Dingle, A. Mouritz, A.A. Khatibi, S. Agius, C.H. Wang, Compos. Struct. 136, 554 (2016)

    Article  Google Scholar 

  24. U. Häussler-Combe, A. Shehni, A. Chihadeh, Int. J. Solids Struct. 200–201, 213 (2020)

    Article  Google Scholar 

  25. I. Curosu, A. Omara, A.H. Ahmed, V. Mechtcherine, Materials 14, 3631 (2021)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. L. Vanalli, R.R. Paccola, H.B. Coda, Commun. Numer. Meth. Engng. 24, 585 (2007)

    Article  Google Scholar 

  27. A.K. Garg, A. Abolmaali, J. Transp. Eng. 135, 121 (2009)

    Article  Google Scholar 

  28. J. Kang, J.E. Bolander, Int. J. Fract. 206, 245 (2017)

    Article  CAS  Google Scholar 

  29. Y. Pan, D. Sullivan, D. I. Shreiber, and A. A. Pelegri, Front. Bioeng. Biotechnol. 1, 19 (2013)

  30. S.A. Yousefsani, A. Shamloo, F. Farahmand, J. Mech. Behav. Biomed. Mater. 80, 194 (2018)

    Article  PubMed  Google Scholar 

  31. H.T. Garimella, R.R. Menghani, J.I. Gerber, S. Sridhar, R.H. Kraft, Ann. Biomed. Eng. 47, 1889 (2019)

    Article  PubMed  Google Scholar 

  32. B.N. Cox, W.C. Carter, N.A. Fleck, Acta Metall. Mater. 42, 3463 (1994)

    Article  CAS  Google Scholar 

  33. Q. Yang, B. Cox, J. Eng. Mater. Technol. 125, 418 (2003)

    Article  Google Scholar 

  34. E.V. Iarve, D.H. Mollenhauer, E.G. Zhou, T. Breitzman, T.J. Whitney, Compos. A Appl. Sci. Manuf. 40, 1880 (2009)

    Article  Google Scholar 

  35. J. Fish, Comput. Struct. 43, 539 (1992)

    Article  Google Scholar 

  36. S. West, Designing a Human-Centric Rigid Body Armor for Female Police Officers: The Implications of Fit on Performance and Gender Inclusivity, University of Arkansas (2019)

  37. B. Sanborn, A.M. DiLeonardi, T. Weerasooriya, J. Dynamic Behavior Mater. 1, 4 (2015)

    Article  Google Scholar 

  38. S. Chocron, N. King, R. Bigger, J.D. Walker, U. Heisserer, H. van der Werff, J. Appl. Mech. 80, 031806 (2013)

    Article  Google Scholar 

  39. M. K. Hazzard, P. T. Curtis, L. Iannucci, S. Hallett, R. Trask, 12 (2015)

  40. V.A. Martin, R.H. Kraft, T.H. Hannah, S. Ellis, Adv. Model. Simul. Eng. Sci. 9, 12 (2022)

    Article  Google Scholar 

  41. SIMULIA User Assistance 2022: Abaqus/Constraints/Embedded Elements. https://help.3ds.com/2022/english/dssimulia_established/SIMACAECSTRefMap/simacst-c-embeddedelement.htm?contextscope=all&id=52ee32705e334ec3a1b69df8ffd66d50#simacst-cembeddedelement-t-SpecifyingTheEmbeddedNodes-sma-topic5

  42. W.-G. Jiang, S.R. Hallett, M.R. Wisnom, Mechanical Response of Composites (Springer, Netherlands, Dordrecht, 2008), pp.281–291

    Book  Google Scholar 

  43. D. Ohyama, T. Kurashiki, Y. Watanabe, Y. Fujita, M. Zako, Estimation of mechanical behavior of braided composites based on mesh superposition method. In: International Conference on Composite Materials (2011). https://iccm-central.org/Proceedings/ICCM18proceedings/data/2.%20Oral%20Presentation/Aug25(Thursday)/Th45%20Micromechanics%20of%20Composites%20and%20Heterogeneous%20Materials%20Multiscale%20Modeling/Th45-6-AF1293.pdf

  44. N.T. Chowdhury, M.W. Joosten, G.M.K. Pearce, Compos. Struct. 210, 294 (2019)

    Article  Google Scholar 

  45. J.P. Attwood, S.N. Khaderi, K. Karthikeyan, N.A. Fleck, M.R. O’Masta, H.N.G. Wadley, V.S. Deshpande, J. Mech. Phys. Solids 70, 200 (2014)

    Article  ADS  Google Scholar 

  46. J.P. Foreman, D. Porter, D. Pope, and F.R. Jones. Predicting the material properties of a polyurethane matrix (a composite within a composite), in ECCM15-15th European Conference on Composite Materials, (2012), pp. 24–28

  47. J.P. Foreman, D. Porter, D. Pope, F.R. Jones, 5 (2012)

  48. M. Hudspeth, X. Nie, W. Chen, Polymer 53, 5568 (2012)

    Article  CAS  Google Scholar 

  49. T. Frank, S. Sockalingam, S.L. Alexander, T. Weerasooriya, DEVCOM army research laboratory. in Influence of Dynamic Multiaxial Transverse Loading on Ultra High Molecular Weight Polyethylene (UHMWPE) Dyneema SK76 Single Fiber Failure (2020), p. 44

  50. F. Thomas, S. Sockalingam, S. L. Alexander, and T. Weerasooriya, 44 (2020)

  51. T. Lässig, L. Nguyen, M. May, W. Riedel, U. Heisserer, H. van der Werff, S. Hiermaier, Int. J. Impact Eng 75, 110 (2015)

    Article  Google Scholar 

Download references

Funding

This work was supported by Triad National Security, LLC which operates Los Alamos National Laboratory under Contract 293402. In addition, the authors gratefully acknowledge the support of the Institute for Computational and Data Sciences at the Pennsylvania State University. R.H.K. was partially supported by the National Science Foundation CAREER award under Award No. 1846059. Any opinions, findings and conclusions expressed in this article are those of the authors and do not necessarily reflect the views of by Penn State University, Triad National Security, LLC, Los Alamos National Laboratory, or the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

VM contributed to the design of the work, the acquisition, analysis, interpretation of data, the creation of finite-element models used in the work, and drafted and revised the paper. RK contributed to the conception and design of the work analysis, and draft revision. TH contributed to the experimental work, drafting, and draft revision. SE contributed to the conception and design of the work.

Corresponding authors

Correspondence to Valerie A. Martin or Reuben H. Kraft.

Ethics declarations

Conflict of interest

Reuben Kraft has a financial interest in BrainSim Technologies Inc., a company which could potentially benefit from the results of this research. This interest has been reviewed by Penn State University in accordance with its Individual Conflict of Interest policy for the purpose of maintaining the objectivity and integrity in research and is being managed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, V.A., Hannah, T.W., Ellis, S. et al. Using the Embedded Element Finite-Element Method to Simulate Impact of Dyneema® Plates. Fibers Polym 25, 619–630 (2024). https://doi.org/10.1007/s12221-023-00417-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00417-z

Keywords

Navigation