Skip to main content
Log in

Evaluating the Reliability of Glass-Braid-Reinforced Polymer Composite Coil Spring for Automotive Suspension Development Using Finite Element Method and Empirical Tests

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This study conducted a comprehensive assessment of the reliability of automobile glass-braid-reinforced polymer (GBRP) composite coil springs fabricated using a braiding technique. The evaluations encompassed durability, plastic deformation, and resistance to chipping, adhering to the industrial standards established for steel springs within the automobile industry. In addition, a method to evaluate the void distribution and impregnation rate is proposed to quantitatively evaluate the quality of the composite fabrication. A method for testing part of manufactured springs was developed using finite element analysis, and the validity of this testing method was confirmed through empirical testing. Upon completing the durability and plastic deformation examinations, the changes in the free height of the GBRP composite coil springs exceeded those of their steel counterparts by 47% and 162.5%, respectively. Notably, these tests revealed no discernible surface failures or fractures on the composite springs. To elucidate the changes in free height observed post-testing, scanning electron microscopy was employed to assess the incurred damage. Furthermore, results from the chipping resistance tests substantiated that the GBRP composite's safety attributes were not compromised by any surface damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

References

  1. M. Choudhary, A. Sharma, M. Dwivedi, Fibers Polym. 20, 823–831 (2019). https://doi.org/10.1007/s12221-019-8863-6

    Article  CAS  Google Scholar 

  2. J.Y. Shim, M.W. Park, I.S. Kim, J. Weld. Join 41(1), 37 (2023). https://doi.org/10.5781/JWJ.2023.41.1.4

    Article  Google Scholar 

  3. W. Zhang, J. Xu, A review. Mater. Des. 221, 110994 (2022). https://doi.org/10.1016/j.matdes.2022.110994

    Article  CAS  Google Scholar 

  4. L.W. Cheah (2010), Thesis, Engineering Systems Division, Massachusetts Institute of Technology (MIT), USA.

  5. H. Mohammadi, Z. Ahmad, S.A. Mazlan, M.A.F.J. Johari, G. Siebert, M. Petrů, S.S.R. Koloor, A. Review, Polymers 15, 193 (2023). https://doi.org/10.3390/polym15010193

    Article  CAS  Google Scholar 

  6. M. Kalova, S. Rusnakova, D. Krzikalla, J. Mesicek, R. Tomasek, A. Podeprelova, J. Rosicky, M. Pagac, Polymers 13, 2949 (2021). https://doi.org/10.3390/polym13172949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S. Mortazavian, A. Fatemi, Compos. B 72, 116 (2015). https://doi.org/10.1016/j.compositesb.2014.11.041

    Article  CAS  Google Scholar 

  8. K.L. Pickering, M.G. Aruan Efendy, T.M. Le, Compos. Part A 83, 98 (2016). https://doi.org/10.1016/j.compositesa.2015.08.038

    Article  CAS  Google Scholar 

  9. L. Wang, J. Wang, Y. Qi, F. Zhang, Z. Weng, X. Jian, Polymers 10, 708 (2018). https://doi.org/10.3390/polym10070708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Y. Zhuang, B. Zou, S. Ding, P. Wang, Coatings 12, 1000 (2022). https://doi.org/10.3390/coatings12071000

    Article  CAS  Google Scholar 

  11. H. Tan, L. Liu, Y. Guan, W. Chen, Z. Zhao, Compos. Struct. 209, 317 (2019). https://doi.org/10.1016/j.compstruct.2018.10.102

    Article  Google Scholar 

  12. P. Ma, Z. Gao, J. Ind. Text. 44(4), 572 (2015). https://doi.org/10.1177/1528083713503001

    Article  Google Scholar 

  13. M.J. Fedro, K. Willden, Ninth DOD(NASA)FAA Conf. Fibrous Compos. Struct. Des. 2, 935 (1992)

    Google Scholar 

  14. Q. Li, Y. Gao, F. Ruan, Sci. Eng. Compos. Mater. 30, 20220191 (2023). https://doi.org/10.1515/secm-2022-0191

    Article  CAS  Google Scholar 

  15. L. Liu, G. Luo, W. Chen, Z. Zhao, X. Huang, Int. J. Aerosp. Eng. 2018, 5906078 (2018). https://doi.org/10.1155/2018/5906078

    Article  Google Scholar 

  16. B.F. Nega, K. Woo, H. Lee, Compos. Res. 32(5), 249 (2019). https://doi.org/10.7234/composres.2019.32.5.249

    Article  Google Scholar 

  17. O. Dorival, P. Navarro, S. Marguet, C. Petiot, M. Bermudez, D. Mesnagé, J.F. Ferrero, Compos. B 78, 244–255 (2015). https://doi.org/10.1016/j.compositesb.2015.03.083

    Article  CAS  Google Scholar 

  18. A.A. Sequeira, R.K. Singh, G.K. Shetti, J. Mech. Eng. Autom. 6(5A), 63 (2016). https://doi.org/10.5923/c.jmea.201601.12

    Article  Google Scholar 

  19. S.H. Oh, B.L. Choi, Trans. Korean Soc. Mech. Eng. A 38(1), 31 (2014). https://doi.org/10.3795/KSME-A.2014.38.1.031

    Article  Google Scholar 

  20. L. Chen, L. Wu, H. Fu, Y. Tang, Polymers 14, 3900 (2022). https://doi.org/10.3390/polym14183900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. H. Jagodang, H. Husaini, T.E. Putra, D. Schramm, Key Eng. Mater. 892, 124 (2021). https://doi.org/10.4028/www.scientific.net/KEM.892.124

    Article  Google Scholar 

  22. J.L. Porteiro, Thesis, Department of Mechanical Engineering, University of South Florida, USA (2010)

  23. J.Z. He, J.N. Lu, X.Y. Deng, X.Q. Xing, Z.C. Luo, Results Eng. 16, 100749 (2022). https://doi.org/10.1016/j.rineng.2022.100749

    Article  Google Scholar 

  24. R. Jones, S.C. Galea, J.J. Paul, Aeronautical Research Labs Melbourne (Australia), Technical Report 23, AR-008-409 (1993).

  25. J. Wang, P. Li, M. Wang, J. Sens. 2022, 6358247 (2022). https://doi.org/10.1155/2022/6358247

    Article  CAS  Google Scholar 

  26. C.H. Chiu, C.L. Hwan, H.S. Tsai, W.P. Lee, Compos. Struct. 77, 331 (2007). https://doi.org/10.1016/j.compstruct.2005.07.022

    Article  Google Scholar 

  27. J.K. Kwon, J.I. Jeon, J.K. Shin, Compos. Res. 35(6), 435 (2022). https://doi.org/10.7234/composres.2022.35.6.439

    Article  Google Scholar 

  28. J.K. Kwon, J.K. Shin, M.H. Kim, 2019 Spring Conf. Korean Soc. Compos. Mater., Yeosu, Korea; (2019), April 3–6.

  29. J.K. Kwon, M.H. Kim, J.K. Shin, The 4th Inter. Conf. Active Mater. Soft Mechatr., Incheon, Korea, (2019) October 16–19.

  30. J.K. Shin, Y.K. Goo, J.I. Jeon, J.K. Kim, K.H. Park, G.S. Yoo, S.J. Kim, 2019 Spring Conf. Korean Soc. Compos. Mater., Yeosu, Korea, (2019) April 3–6.

  31. M.T. Todinov, Int. J. Mech. Sci. 41, 357 (1999). https://doi.org/10.1016/S0020-7403(98)00068-X

    Article  Google Scholar 

  32. F.C. Campbell, Elements of metallurgy and engineering alloys (ASM Technical Books, ASM International, 2008)

  33. Y. Molev, D. Proshin, E. Stepanov, S. Maleev, I. Mavleev, I. Salakhov, IOP Conf. Ser. Mater. Sci. Eng. 695, 012028 (2019). https://doi.org/10.1088/1757-899X/695/1/012028

    Article  Google Scholar 

  34. M. Hük, S. Hoffmann, Technical Specification. SCTM-02 iABG 2013.

  35. R.F. Vogt, M. Wis, Trans. Am. Soc. Mech. Eng. 56(6), 467–476 (1934)

    Google Scholar 

  36. N. Han, O. Yuksel, J.S.M. Zanjani, L. An, R. Akkerman, I. Baran, Appl. Compos. Mater. 29, 1061 (2022). https://doi.org/10.1007/s10443-021-10000-5

    Article  Google Scholar 

  37. X. Liu, F. Chen, Eng. Trans. 64(1), 33 (2016)

    Google Scholar 

  38. M. Mehdikhani, L. Gorbatikh, I. Verpoest, S.V. Lomov, J. Compos. Mater. 53(12), 1579 (2019). https://doi.org/10.1177/0021998318772152

    Article  CAS  Google Scholar 

  39. M.J. Hassan, A.R. Othman, S. Kamaruddin, Adv. Mater. Res. 795, 64 (2013). https://doi.org/10.4028/www.scientific.net/AMR.795.64

    Article  Google Scholar 

  40. A. Ramesh, Thesis, Mechanical Engineering (The University of North Carolina at Charlotte, USA 2009)

  41. D.H. Kim, K.H. Jung, I.G. Lee, H.J. Kim, H.S. Kim, Compos. Struct. 176, 757 (2017). https://doi.org/10.1016/j.compstruct.2017.06.031

    Article  Google Scholar 

  42. J. Wang, L. Chen, W. Shen, L. Zhu, Polymers 14, 2318 (2022). https://doi.org/10.3390/polym14122318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. P. Kavouras, D.A. Dragatogiannis, D.I. Batsouli, C.A. Charitidis, Polym. Test. 61, 197 (2017). https://doi.org/10.1016/j.polymertesting.2017.05.023

    Article  CAS  Google Scholar 

  44. S. Kawazoe, Y. Kagawa, Sci. Technol. Adv. Mater. 2, 425 (2001). https://doi.org/10.1016/S1468-6996(01)00014-6

    Article  CAS  Google Scholar 

  45. Y. Li, X. Chen, J. Zhou, X. Liu, D. Zhang, F. Du, W. He, P. Jia, H. Liu, Int. J. Mech. Syst. Dyn. 2, 50 (2022). https://doi.org/10.1002/msd2.12033

    Article  Google Scholar 

  46. A. Katunin, I. Pivdiablyk, L. Gornet, P. Rozycki, Compos. B 238, 109898 (2022). https://doi.org/10.1016/j.compositesb.2022.109898

    Article  CAS  Google Scholar 

  47. T. Lukács, C. Pereszlai, N. Geier, Compos. Part B 248, 110381 (2023). https://doi.org/10.1016/j.compositesb.2022.110381

    Article  CAS  Google Scholar 

  48. W.K. Tredway, United technologies research center, R95-5/102.0006-3 (1995)

  49. Y.H. Huh, J.I. Kim, D.J. Kim, G.C. Lee, Trans. Korean Soc. Mech. Eng. A 36(9), 1053 (2012). (In Korean)

    Article  Google Scholar 

  50. K.W. Kang, Y.S. Kim, M.H. Lee, R. Choi, J. Korean Soc. Saf. 20(4), 14 (2005). (In Korean)

    Google Scholar 

  51. J.E. Grady, E.H. Meyn, Scientific and Technical Information Division, Lewis Research Center Cleveland, NASA Technical Memorandum, Ohio, (1989).

  52. D. Kreculj, B. Rašuo, Tehnicki Vjesnik 20(3), 485 (2013)

    Google Scholar 

  53. V. Alagumalai, V. Shanmugam, N.K. Balasubramanian, Y. Krishnamoorthy, V. Ganesan, M. Försth, G. Sas, F. Berto, A. Chanda, O. Das, Polymers 13, 2591 (2021). https://doi.org/10.3390/polym13162591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. X.L. Fan, Q. Sun, M. Kikuchi, J. Solid Mech. 2(3), 275 (2010)

    Google Scholar 

Download references

Acknowledgements

This research was conducted as part of Youngwire project titled “Development of high-durability composite coil springs.”

Funding

This work was supported by Hyundai Motor Company in 2018 and Youngwire in 2019.

Author information

Authors and Affiliations

Authors

Contributions

JK led the conception and design of the study, carried out the experiments, analyzed the data, and drafted the manuscript, providing the key conceptual ideas and proof outline. JJ significantly contributed to the manuscript by reviewing and editing it, as well as analyzing the data. JS played a crucial role in designing and implementing the research, reviewing and editing the manuscript, and conducting the numerical analysis and experimentation.

Corresponding author

Correspondence to Jungkyu Shin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Not applicable.

Consent

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, J., Jeon, J. & Shin, J. Evaluating the Reliability of Glass-Braid-Reinforced Polymer Composite Coil Spring for Automotive Suspension Development Using Finite Element Method and Empirical Tests. Fibers Polym 24, 4031–4047 (2023). https://doi.org/10.1007/s12221-023-00368-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00368-5

Keywords

Navigation