Skip to main content
Log in

Non-isothermal Simulation of Edge Effect in LCM Process for Plain-Weave Fabric

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Edge effect is a common phenomenon in liquid composite molding (LCM), which has a significant impact on the performance of composite components. Plain-weave fabric is widely used in LCM process. Nevertheless, the yarns of plain-weave fabric in edge area are easy to shed which will cause the edge effect. Meanwhile, the current LCM process is non-isothermal, which the infiltration effect and curing efficiency are improved by heating the resin and the mold. Few systemic researches can be found in the edge effect of LCM process caused by shedding yarns under non-isothermal conditions. This article applied a method to calculate the permeability which considered the yarn shedding of plain-weave fabric. A non-isothermal rheological model of resin is established through resin viscosity and differential scanning calorimetry (DSC) experiments. A simulation model of the edge effect due to yarns shedding under non-isothermal conditions is proposed. This model divides the flow region into the central area, edge area and gap area. Simulation of edge effect is realized by setting three different permeability areas and combining them with the non-isothermal rheological model. Simulation results of edge effect are verified by the non-isothermal flow experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. C.W. Choi, J.W. Jin, H. Lee, M. Huh, K.W. Kang, Fiber. Polym. 20, 1021 (2019)

    Article  CAS  Google Scholar 

  2. G. Koronis, A. Silva, A.P. Soares Dias, Fiber. Polym 15, 2618 (2014)

    Article  CAS  Google Scholar 

  3. J.I. Kim, Y.T. Hwang, K.H. Choi, H.J. Kim, H.S. Kim, Compos. Struct. 211, 236 (2019)

    Article  Google Scholar 

  4. S.H. Lee, M. Yang, Y.S. Song, S.Y. Kim, J.R. Youn, J. Appl. Polym. Sci. 114, 1803 (2010)

    Article  Google Scholar 

  5. A.R. Aziz, M.A. Ali, X. Zeng, R. Umer, P. Schubel, W.J. Cantwell, Compos. Sci. Technol. 152, 57 (2010)

    Article  Google Scholar 

  6. W. Yang, S. Lu, L. Xiang, W. Liu, J. Reinf. Plastic. Compos. 38, 3 (2019)

    Article  CAS  Google Scholar 

  7. W. Yang, S. Lu, L. Xiang, W. Liu, J. Appl. Polym. Sci. 136, 47492 (2019)

    Article  Google Scholar 

  8. J. Yang, Y. Jia, Y. Ding, H. He, T. Shi, L. An, J. Appl. Polym. Sci. 182, 1014 (2010)

    Article  Google Scholar 

  9. J. Ni, Y. Zhao, L.J. Lee, S. Nakamura, Polym. Compos. 18, 254 (1997)

    Article  CAS  Google Scholar 

  10. W.B. Young, C.L. Lai, Compos. Part A Appl. Sci. 28, 817 (1997)

    Article  Google Scholar 

  11. V.A.F. Costa, M.S.A. Oliveira, A.C.M. Sousa, Compos. Struct. 82, 1535 (2004)

    Article  Google Scholar 

  12. J. Yang, Y. Jia, S. Sun, D. Ma, T. Shi, L. An, Mater. Sci. Eng. A. 478, 384 (2008)

    Article  Google Scholar 

  13. Y. Ding, Y. Jia, Polym. Compos. 36, 2008 (2015)

    Article  CAS  Google Scholar 

  14. E.B. Belov, S.V. Lomov, I. Verpoest, T. Peters, D. Roose, R.S. Parnas, K. Hoes, H. Sol, Compos. Sci. Technol. 64, 1069 (2004)

    Article  Google Scholar 

  15. C.C. Wong, A.C. Long, M. Sherburn, F. Robitaille, P. Harrison, C.D. Rudd, Compos. Part A Appl. Sci. 37, 847 (2006)

    Article  Google Scholar 

  16. W. Yang, S. Lu, W. Liu, Fiber. Polym. 21, 2068 (2020)

    Article  CAS  Google Scholar 

  17. Z.R. Chen, L. Ye, M. Lu, J. Comp. Mater. 44, 1569 (2010)

    Article  CAS  Google Scholar 

  18. B. Yu, L.J. Lee, Polym. Compos. 21, 660 (2000)

    Article  CAS  Google Scholar 

  19. B. Yang, S. Wang, Q. Tang, Polym. Compos. 39, 4408 (2018)

    Article  CAS  Google Scholar 

  20. X. Zeng, A. Endruweit, L.P. Brown, L.C. Andrew, Compos. Part A Appl. Sci. 77, 266 (2015)

    Article  Google Scholar 

  21. P. Simacek, S.G. Advani, Compos. Sci. Technol. 63, 1725 (2003)

    Article  CAS  Google Scholar 

  22. N. Kuentzer, P. Simacek, S.G. Advani, S. Walsh, Compos. Part A Appl. Sci. 38, 802 (2007)

    Article  Google Scholar 

  23. B. Gourichon, D. Mylène, C. Binetruy, P. Krawczak, Compos. Part A Appl. Sci. 39, 46 (2008)

    Article  Google Scholar 

  24. A. Salama, Spec. Top. Rev. Porous Media 2, 83 (2011)

    Article  Google Scholar 

  25. B.R. Gebart, J. Comp. Mater. 26, 1100 (1992)

    Article  CAS  Google Scholar 

  26. J. Zhang, H. Dong, L. Tong, L. Meng, Y. Chen, G. Yue, Thermochim. Acta. 63, 549 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Grant No. 52205335), Basic Science (Natural Science) Research Project of Colleges and Universities in Jiangsu Province (Grant No. 21KJD460004), and Changzhou Science and Technology Project (Grant No. CJ20220154) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenkai Yang.

Ethics declarations

Conflict of Interest

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all the authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W. Non-isothermal Simulation of Edge Effect in LCM Process for Plain-Weave Fabric. Fibers Polym 24, 4089–4097 (2023). https://doi.org/10.1007/s12221-023-00365-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00365-8

Keywords

Navigation