Skip to main content
Log in

Preparation and Properties of Water-Resistant Antibacterial Curcumin/Silver Composite Nanofiber

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The water-resistant antibacterial PVA nanofibers containing curcumin (Cur) and silver nanoparticles (AgNPs) were prepared by electrospinning, and the AgNps were prepared by in situ reduction in the spinning solution. The prepared PVA nanofibers were measured by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectrophotometer (FT-IR). The breathable, hygroscopic, antibacterial, anti-inflammatory, and antioxidants functions of the prepared nanofibers were evaluated. The results indicated that the prepared nanofiber membrane has high swelling rate, moisture permeability, good mechanical properties, good biocompatibility, anti-inflammatory, antioxidant, and bacteriostatic activities with no cytotoxicity. Curcumin and AgNPs in the prepared nanofiber have effect on antibacterial activity and wound healing. The functionalized silver nanoparticles developed have effective activities against both Gram-negative bacteria and Gram-positive bacteria. In short, Cur/AgNPs composite nanofibers can be used as a potential medical dressing with antibacterial, anti-inflammatory, and antioxidant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

All data in this paper will be made available on request.

References

  1. Q. Chen, Y. Wang, F. Yin, W. Wang, G. Chen, P. Lin, Preparation and characterization of polyvinyl alcohol-chitosan/cerium-nanocellulose hydrogel for medical dressing application. Starch - Stärke (2022). https://doi.org/10.1002/star.202100197

    Article  Google Scholar 

  2. A. Moeini, P. Pedram, P. Makvandi, M. Malinconico, G. Gomez d’Ayala, Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: a review. Carbohydr. Polym. 233, 115839 (2020). https://doi.org/10.1016/j.carbpol.2020.115839

    Article  CAS  PubMed  Google Scholar 

  3. H. Xu, F. Zhang, M. Wang, H. Lv, D.G. Yu, X. Liu, H. Shen, Electrospun hierarchical structural films for effective wound healing. Biomater. Adv. 136, 212795 (2022). https://doi.org/10.1016/j.bioadv.2022.212795

    Article  CAS  PubMed  Google Scholar 

  4. K. Yang, X. Yin, Y. Yan, G. Luo, M. Xu, P. Pi, S. Xu, X. Wen, Fast near infrared light response hydrogel as medical dressing for wound healing. J. Appl. Polym. Sci. (2020). https://doi.org/10.1002/app.49309

    Article  Google Scholar 

  5. R. Yu, H. Zhang, B. Guo, Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering. Nanomicro. Lett. 14, 1 (2021). https://doi.org/10.1007/s40820-021-00751-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S. Alven, S. Peter, Z. Mbese, B.A. Aderibigbe, Polymer-based wound dressing materials loaded with bioactive agents: potential materials for the treatment of diabetic wounds. Polymers (Basel) (2022). https://doi.org/10.3390/polym14040724

    Article  PubMed  Google Scholar 

  7. W.S. Aburayan, A.M. Alajmi, A.J. Alfahad, W.K. Alsharif, A.A. Alshehri, R.Y. Booq, S.A. Alsudir, F.M. Alsulaihem, H.A. Bukhary, M.Y. Badr, E.J. Alyamani, E.A. Tawfik, Melittin from bee venom encapsulating electrospun fibers as a potential antimicrobial wound dressing patches for skin infections. Pharmaceutics (2022). https://doi.org/10.3390/pharmaceutics14040725

    Article  PubMed  PubMed Central  Google Scholar 

  8. A.A. El-Attar, H.B. El-Wakil, A.H. Hassanin, B.A. Bakr, T.M. Almutairi, M. Hagar, B.H. Elwakil, Z.A. Olama, Silver/snail mucous PVA nanofibers: electrospun synthesis and antibacterial and wound healing activities. Membranes (Basel) (2022). https://doi.org/10.3390/membranes12050536

    Article  PubMed  Google Scholar 

  9. M.M. Mahmud, S. Zaman, A. Perveen, R.A. Jahan, M.F. Islam, M.T. Arafat, Controlled release of curcumin from electrospun fiber mats with antibacterial activity. J. Drug Deliv. Sci. Technol. (2020). https://doi.org/10.1016/j.jddst.2019.101386

    Article  Google Scholar 

  10. S. Saidin, M.A. Jumat, N.A.A. Mohd Amin, A.S. Saleh Al-Hammadi, Organic and inorganic antibacterial approaches in combating bacterial infection for biomedical application. Mater. Sci. Eng. C Mater. Biol. Appl. 118, 111382 (2021). https://doi.org/10.1016/j.msec.2020.111382

    Article  CAS  PubMed  Google Scholar 

  11. Y. Huang, L. Bai, Y. Yang, Z. Yin, B. Guo, Biodegradable gelatin/silver nanoparticle composite cryogel with excellent antibacterial and antibiofilm activity and hemostasis for Pseudomonas aeruginosa-infected burn wound healing. J. Colloid Interface Sci. 608, 2278 (2022). https://doi.org/10.1016/j.jcis.2021.10.131

    Article  CAS  PubMed  Google Scholar 

  12. C. Shuai, G. Liu, Y. Yang, F. Qi, S. Peng, W. Yang, C. He, G. Wang, G. Qian, A strawberry-like Ag-decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold. Nano Energy (2020). https://doi.org/10.1016/j.nanoen.2020.104825

    Article  Google Scholar 

  13. P. Du, Y. Xu, Y. Shi, Q. Xu, S. Li, M. Gao, Preparation and shape change of silver nanoparticles (AgNPs) loaded on the dialdehyde cellulose by in-situ synthesis method. Cellulose 29, 6831 (2022). https://doi.org/10.1007/s10570-022-04692-6

    Article  CAS  PubMed  Google Scholar 

  14. N. Bandatang, S.-A. Pongsomboon, P. Jumpapaeng, P. Suwanakood, S. Saengsuwan, Antimicrobial electrospun nanofiber mats of NaOH-hydrolyzed chitosan (HCS)/PVP/PVA incorporated with in-situ synthesized AgNPs: Fabrication, characterization, and antibacterial activity. Int. J. Biol. Macromol. 190, 585 (2021). https://doi.org/10.1016/j.ijbiomac.2021.08.209

    Article  CAS  PubMed  Google Scholar 

  15. M.K. Haider, A. Ullah, M.N. Sarwar, T. Yamaguchi, Q. Wang, S. Ullah, S. Park, I.S. Kim, Fabricating antibacterial and antioxidant electrospun hydrophilic polyacrylonitrile nanofibers loaded with AgNPs by lignin-induced in-situ method. Polymers (2021). https://doi.org/10.3390/polym13050748

    Article  PubMed  PubMed Central  Google Scholar 

  16. M.C. Moulton, L.K. Braydich-Stolle, M.N. Nadagouda, S. Kunzelman, S.M. Hussain, R.S. Varma, Synthesis, characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols. Nanoscale (2010). https://doi.org/10.1039/c0nr00046a

    Article  PubMed  Google Scholar 

  17. S. Ferraris, M. Miola, A. Cochis, B. Azzimonti, L. Rimondini, E. Prenesti, E. Vernè, In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols. Appl. Surf. Sci. 396, 461 (2017). https://doi.org/10.1016/j.apsusc.2016.10.177

    Article  CAS  Google Scholar 

  18. N. Aliabbasi, M. Fathi, Z. Emam-Djomeh, Curcumin: a promising bioactive agent for application in food packaging systems. J. Environ. Chem. Eng. (2021). https://doi.org/10.1016/j.jece.2021.105520

    Article  Google Scholar 

  19. A. Vilchez, F. Acevedo, M. Cea, M. Seeger, R. Navia, Development and thermochemical characterization of an antioxidant material based on polyhydroxybutyrate electrospun microfibers. Int. J. Biol. Macromol. 183, 772 (2021). https://doi.org/10.1016/j.ijbiomac.2021.05.002

    Article  CAS  PubMed  Google Scholar 

  20. S. Al Shehab, D. Patra, Binding of metal ions to the curcumin mediated methoxy polyethylene glycol thiol conjugated greenly synthesized gold nanoparticles: a fluorescence spectroscopic study. J. Photochem. Photobiol. A Chem. (2021). https://doi.org/10.1016/j.jphotochem.2020.113083

    Article  Google Scholar 

  21. B.A. Lakshmi, A.S. Reddy, R. Sangubotla, J.W. Hong, S. Kim, Ruthenium(II)-curcumin liposome nanoparticles: synthesis, characterization, and their effects against cervical cancer. Colloids Surf. B Biointerfaces 204, 111773 (2021). https://doi.org/10.1016/j.colsurfb.2021.111773

    Article  CAS  PubMed  Google Scholar 

  22. M.M. Mahmud, A. Perveen, M.A. Matin, M.T. Arafat, Effects of binary solvent mixtures on the electrospinning behavior of poly (vinyl alcohol). Mater. Res. Express (2018). https://doi.org/10.1088/2053-1591/aadf1f

    Article  Google Scholar 

  23. Z. Wei, L. Wang, S. Zhang, T. Chen, J. Yang, S. Long, X. Wang, Electrospun antibacterial nanofibers for wound dressings and tissue medicinal fields: a review. J. Innov. Opt. Health Sci. (2020). https://doi.org/10.1142/s1793545820300128

    Article  Google Scholar 

  24. S. Khalili, N. Ghane, S.N. Khorasani, F. Heydari, A. Atwal, P. Davoodi, Cytocompatibility and antibacterial properties of coaxial electrospun nanofibers containing ciprofloxacin and indomethacin drugs. Polymers 14, 2565 (2022). https://doi.org/10.3390/polym14132565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. M.N. Sarwar, H.G. Ali, S. Ullah, K. Yamashita, A. Shahbaz, U. Nisar, M. Hashmi, I.S. Kim, Electrospun PVA/CuONPs/bitter gourd nanofibers with improved cytocompatibility and antibacterial properties: application as antibacterial wound dressing. Polymers (Basel) (2022). https://doi.org/10.3390/polym14071361

    Article  PubMed  Google Scholar 

  26. F. Zhan, X. Yan, J. Li, F. Sheng, B. Li, Encapsulation of tangeretin in PVA/PAA crosslinking electrospun fibers by emulsion-electrospinning: Morphology characterization, slow-release, and antioxidant activity assessment. Food Chem. (2021). https://doi.org/10.1016/j.foodchem.2020.127763

    Article  PubMed  PubMed Central  Google Scholar 

  27. M. Yin, S. Wan, X. Ren, C.C. Chu, Development of inherently antibacterial, biodegradable, and biologically active chitosan/pseudo-protein hybrid hydrogels as biofunctional wound dressings. ACS Appl. Mater. Interfaces 13, 14688 (2021). https://doi.org/10.1021/acsami.0c21680

    Article  CAS  PubMed  Google Scholar 

  28. H.R. Bakhsheshi-Rad, A.F. Ismail, M. Aziz, Z. Hadisi, M. Omidi, X. Chen, Antibacterial activity and corrosion resistance of Ta2O5 thin film and electrospun PCL/MgO–Ag nanofiber coatings on biodegradable Mg alloy implants. Ceram. Int. 45, 11883 (2019). https://doi.org/10.1016/j.ceramint.2019.03.071

    Article  CAS  Google Scholar 

  29. Y. Liu, G. Jiang, L. Li, H. Chen, Q. Huang, X. Du, Z. Tong, Electrospun CeO2/Ag@carbon nanofiber hybrids for selective oxidation of alcohols. Powder Technol. 305, 597 (2017). https://doi.org/10.1016/j.powtec.2016.10.042

    Article  CAS  Google Scholar 

  30. M. Saikia, T. Das, B.K. Saikia, A novel rapid synthesis of highly stable silver nanoparticle/carbon quantum dot nanocomposites derived from low-grade coal feedstock. New J. Chem. 46, 309 (2022). https://doi.org/10.1039/d1nj04039a

    Article  CAS  Google Scholar 

  31. J.C. Fuggle, E. Källne, L.M. Watson, D.J. Fabian, Electronic structure of aluminum and aluminum-noble-metal alloys studied by soft-x-ray and x-ray photoelectron spectroscopies. Phys. Rev. B 16, 750 (1977). https://doi.org/10.1103/PhysRevB.16.750

    Article  CAS  Google Scholar 

  32. S.-Y. Ryu, J.W. Chung, S.-Y. Kwak, Dependence of photocatalytic and antimicrobial activity of electrospun polymeric nanofiber composites on the positioning of Ag–TiO 2 nanoparticles. Compos. Sci. Technol. 117, 9 (2015). https://doi.org/10.1016/j.compscitech.2015.05.014

    Article  CAS  Google Scholar 

  33. A. Verma, M. Shukla, S. Kumar, S. Pal, I. Sinha, Mechanism of visible light enhanced catalysis over curcumin functionalized Ag nanocatalysts. Spectrochim. Acta A Mol. Biomol. Spectrosc. 240, 118534 (2020). https://doi.org/10.1016/j.saa.2020.118534

    Article  CAS  PubMed  Google Scholar 

  34. S. Sau, S. Kundu, Variation in structure and properties of poly(vinyl alcohol) (PVA) film in the presence of silver nanoparticles grown under heat treatment. J. Mol. Struct. (2022). https://doi.org/10.1016/j.molstruc.2021.131699

    Article  Google Scholar 

  35. R. Nirmala, K.T. Nam, D.K. Park, B. Woo-il, R. Navamathavan, H.Y. Kim, Structural, thermal, mechanical and bioactivity evaluation of silver-loaded bovine bone hydroxyapatite grafted poly(ε-caprolactone) nanofibers via electrospinning. Surf. Coat. Technol. 205, 174 (2010). https://doi.org/10.1016/j.surfcoat.2010.06.027

    Article  CAS  Google Scholar 

  36. S.Y. Teow, K. Liew, S.A. Ali, A.S. Khoo, S.C. Peh, Antibacterial action of curcumin against Staphylococcus aureus: a brief review. J. Trop. Med. 2016, 2853045 (2016). https://doi.org/10.1155/2016/2853045

    Article  PubMed  PubMed Central  Google Scholar 

  37. M. Ghandadi, A. Sahebkar, Curcumin: an effective inhibitor of interleukin-6. Curr. Pharm. Des. 23, 921 (2017). https://doi.org/10.2174/1381612822666161006151605

    Article  CAS  PubMed  Google Scholar 

  38. D.A. Pradana, M. Ardhi, A.C.D.U. Hasyono, D. Meytasari, F.D. Nabilah, R. Istikharah, L. Chabib, Nanocurcumin preparation for reducing Vcam-1 and IL-6 in high fat diet-induced hyperlipidemic rats. Indones. J. Pharm. (2019). https://doi.org/10.14499/indonesianjpharm30iss1pp58

    Article  Google Scholar 

  39. M. Amina, N.M. Al Musayeib, N.A. Alarfaj, M.F. El-Tohamy, G.A. Al-Hamoud, Antibacterial and immunomodulatory potentials of biosynthesized Ag, Au, Ag–Au bimetallic alloy nanoparticles using the asparagus racemosus root extract. Nanomaterials (Basel) (2020). https://doi.org/10.3390/nano10122453

    Article  PubMed  Google Scholar 

  40. X. Ren, Y. Hu, L. Chang, S. Xu, X. Mei, Z. Chen, Electrospinning of antibacterial and anti-inflammatory Ag@hesperidin core-shell nanoparticles into nanofibers used for promoting infected wound healing. Regen. Biomater. 9, rbac012 (2022). https://doi.org/10.1093/rb/rbac012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. H.-L. Su, C.-C. Chou, D.-J. Hung, S.-H. Lin, I.C. Pao, J.-H. Lin, F.-L. Huang, R.-X. Dong, J.-J. Lin, The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30, 5979 (2009). https://doi.org/10.1016/j.biomaterials.2009.07.030

    Article  CAS  PubMed  Google Scholar 

  42. S. Prasad, D. DuBourdieu, A. Srivastava, P. Kumar, R. Lall, Metal-curcumin complexes in therapeutics: an approach to enhance pharmacological effects of curcumin. Int. J. Mol. Sci. (2021). https://doi.org/10.3390/ijms22137094

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 21706093)

Funding

National Natural Science Foundation of China, 21706093, Rong Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Li.

Ethics declarations

Conflict of Interest

We declare that there is no known competing financial interests or personal relationships that could affect the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Ma, C., Zhou, C. et al. Preparation and Properties of Water-Resistant Antibacterial Curcumin/Silver Composite Nanofiber. Fibers Polym 24, 3821–3832 (2023). https://doi.org/10.1007/s12221-023-00346-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00346-x

Keywords

Navigation