Skip to main content
Log in

Reversible Thermochromic Polycaprolactone Nanofibers for Repetitive Usage

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Color change technology offers unique and challenging opportunities. Thermo-responsive color-changing nanofibers with reversibility have great potential as thermal sensors due to their increased sensitivity and fast response. Herein, polycaprolactone (PCL) nanofibers were produced by adding a leuco-based thermochromic dye with various concentrations (1%, 3%, and 5% wt corresponding to PCL1, PCL3, and PCL5, respectively). The color-changing properties with repetitive heating and cooling were studied, and the effect of dye concentration on the nanofiber properties was determined. The surface properties, dye presence, thermal and mechanical properties were analyzed by SEM–EDS, FTIR, DSC, and tensile tests. Finally, the color change properties were monitored by 1000 heating and cooling cycles between 20 and 40 °C. Thermochromic PCL nanofibers were successfully produced by electrospinning. However, some agglomerates were observed on the nanofibers with increasing dye concentration in SEM images. It was seen that the optimum dye concentration was 3% in terms of the electrospinnability. For PCL5, both presence of carbon, oxygen, nitrogen, and fluorine in EDS spectra, the shifted peaks at 2917 and 2849 cm−1, and the new peaks at 1558, 1517, 1330, 1274, 1213 and 883 cm−1 in FTIR spectra confirmed that dye had been successfully incorporated into the PCL structure. The dye addition caused a decrease in the crystallization degrees, which resulted in lower mechanical properties. PCL5 had the lowest modulus. Color measurements showed that 1% of dyes concentration was not sufficient for the thermochromic property, and the color change was still visually detectable for PCL3 and PCL5 even after 1000 heating and cooling cycles. Color change activation temperature (TA) was confirmed between 30 and 32 °C, and the stability of color change was confirmed for 1000 heating and cooling cycles. After 1000 heating and cooling cycles, the color change was still detectable for PCL3 and PCL5. Consequently, this study showed that reversible thermochromic PCL nanofibers could be promising materials for future sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are available within the article and/or from the authors upon reasonable request.

References

  1. W. Wu, Y. Wang, Z. Zhang, F. Wang, S. Lu, X. Chen, Dye. Pigment. 204, 110406 (2022). https://doi.org/10.1016/J.DYEPIG.2022.110406

    Article  CAS  Google Scholar 

  2. N. Shen, S. Chen, R. Huang, J. Huang, J. Li, R. Shi, S. Niu, A. Amini, C. Cheng, Mater. Today Energy 21, 100827 (2021). https://doi.org/10.1016/J.MTENER.2021.100827

    Article  CAS  Google Scholar 

  3. L. Arneill, Australian Company Introduces BPA Free Bottle That Changes Colour. (https://www.growingyourbaby.com/australian-company-introduces-bpa-free-bottle-that-changes-colour/. Accessed 29 May 2023)

  4. C.G. Granqvist, G.A. Niklasson, Buildings 7(1), 1–20 (2017). https://doi.org/10.3390/buildings7010003

    Article  Google Scholar 

  5. X. Chen, J. Yoon, Dye. Pigment. 89(3), 194–198 (2011). https://doi.org/10.1016/j.dyepig.2009.12.015

    Article  CAS  Google Scholar 

  6. Z. Ahmed, Y. Wei, R. Torah, J. Tudor, Electron. Lett. 52(19), 1601–1603 (2016). https://doi.org/10.1049/EL.2016.1073

    Article  CAS  Google Scholar 

  7. E. Schoolaert, R. Hoogenboom, K. De Clerck, Adv. Funct. Mater. 27(38), 1702646 (2017). https://doi.org/10.1002/ADFM.201702646

    Article  Google Scholar 

  8. J.M.A. Mancipe, S.V.G. Nista, G.E.R. Caballero, L.H.I. Mei, J. Appl. Polym. Sci. 138(11), 50039 (2021). https://doi.org/10.1002/APP.50039

    Article  CAS  Google Scholar 

  9. N. Eslahi, T. Fatemi, M. Varsei, S. Bazgir, Sci. Iran. 27(6), 3447–3453 (2020). https://doi.org/10.24200/SCI.2020.55714.4369

    Article  Google Scholar 

  10. O. Mapazi, K.P. Matabola, R.M. Moutloali, C.J. Ngila, Polymer (Guildf) 149, 106–116 (2018). https://doi.org/10.1016/J.POLYMER.2018.06.028

    Article  CAS  Google Scholar 

  11. N. Moazeni, M. Latifi, A.A. Merati, S. Rouhani, Soft Matter 13(44), 8178–8187 (2017). https://doi.org/10.1039/C7SM01252G

    Article  CAS  PubMed  Google Scholar 

  12. Y. Guan, L. Zhang, D. Wang, J.L. West, S. Fu, Mater. Des. 147, 28–34 (2018). https://doi.org/10.1016/J.MATDES.2018.03.030

    Article  CAS  Google Scholar 

  13. M.L. de Oliveira Peres, E.T. Neto, A.A. De Queiroz, A.A. de Queiroz, IEEE Sens. Lett. 5(3), 2000304 (2021). https://doi.org/10.1109/LSENS.2021.3058056

    Article  Google Scholar 

  14. Y. Jin, Y. Bai, Y. Zhu, X. Li, M. Ge, Dye. Pigment. 146, 567–575 (2017). https://doi.org/10.1016/J.DYEPIG.2017.07.062

    Article  CAS  Google Scholar 

  15. M.W. Williams, J.A. Wimberly, R.M. Stwodah, J. Nguyen, P.A. D’Angelo, C. Tang, A.C.S. Appl, Polym. Mater. 5(4), 3065–3078 (2023). https://doi.org/10.1021/acsapm.3c00222

    Article  CAS  Google Scholar 

  16. P.G. Saiz, A. Reizabal, J.L. Vilas-Vilela, S. Lanceros-Mendez, P.D. Dalton, A.C.S. Appl, Polym. Mater. 5(6), 3883–3887 (2023). https://doi.org/10.1021/acsapm.3c00427

    Article  CAS  Google Scholar 

  17. H.S. Jeon, J.H. Kim, M.B.G. Jun, Y.H. Jeong, Materials (Basel) 14(13), 3460 (2021). https://doi.org/10.3390/ma14133460

    Article  CAS  PubMed  Google Scholar 

  18. Y. He, S. Sun, N. Han, X. Zhang, W. Li, J. Mater. Sci. 55(27), 12921–12939 (2020). https://doi.org/10.1007/s10853-020-04936-5

    Article  CAS  Google Scholar 

  19. J. Pan, B. Hao, P. Xu, D. Li, L. Luo, J. Li, Z. Xia, D. Cheng, A. Xu, G. Cai, X. Wang, Chem. Eng. J. 384, 123376 (2020). https://doi.org/10.1016/J.CEJ.2019.123376

    Article  CAS  Google Scholar 

  20. S. Wang, L. Yi, Y. Fang, L. Wang, J. Yao, J. Marek, M. Zhang, J. Appl. Polym. Sci. 138(21), 50465 (2021). https://doi.org/10.1002/APP.50465

    Article  CAS  Google Scholar 

  21. I. Yilmaz, M. Gullu, T. Baybura, A.O. Erdogan, Afyon Kocatepe Universitesi Fen ve Muhendislik Bilim Derg. 2(2), 19–35 (2002)

    Google Scholar 

  22. V. Vlad, S. Dumitru, M. Toti, C. Simota, M. Dumitru, Mendeley Data (2020). https://doi.org/10.17632/SDVTD7TBB9.2

    Article  Google Scholar 

  23. K. McLaren, Colour space, colour scales and colour difference, in Colour Physics for Industry, ed. by R. McDonald (Society of Dyers and Colourists, 1987), pp. 106–107

    Google Scholar 

  24. R.E. Wrolstad, D.E. Smith, “Color Analysis”, in Food Analysis, in Food Science Text Series. ed. by S.S. Nielsen (Springer, Cham, 2017), pp.545–555. https://doi.org/10.1007/978-3-319-45776-5_31

    Chapter  Google Scholar 

  25. A. Agarwal, A. Raheja, T.S. Natarajan, T.S. Chandra, Sens. Actuat. B Chem. 161(1), 1097–1101 (2012). https://doi.org/10.1016/J.SNB.2011.12.027

    Article  CAS  Google Scholar 

  26. R. Jiménez, F. Duarte, S. Nuti, J.A. Campo, C. Lodeiro, M. Cano, C. Cuerva, Dye. Pigment. 177, 108272 (2020). https://doi.org/10.1016/J.DYEPIG.2020.108272

    Article  Google Scholar 

  27. B. Liu, L. Wen, K. Nakata, X. Zhao, S. Liu, T. Ochiai, T. Murakami, A. Fujishima, Chem. A Eur. J. 18(40), 12705–12711 (2012). https://doi.org/10.1002/CHEM.201200178

    Article  CAS  Google Scholar 

  28. W. Zhang, X. Ji, C. Zeng, K. Chen, Y. Yin, C. Wang, J. Mater. Chem. C 5(32), 8169–8178 (2017). https://doi.org/10.1039/C7TC02077E

    Article  CAS  Google Scholar 

  29. Y. Zhang, H. Liu, J. Niu, X. Wang, D. Wu, Appl. Energy 264, 114729 (2020). https://doi.org/10.1016/J.APENERGY.2020.114729

    Article  CAS  Google Scholar 

  30. Y. Pu, J. Fang, Coll. Surf. A Physicochem. Eng. Asp. 653, 129889 (2022). https://doi.org/10.1016/J.COLSURFA.2022.129889

    Article  CAS  Google Scholar 

  31. L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.H. Nasr-Esfahani, S. Ramakrishna, Mater. Sci. Eng. C 30(8), 1129–1136 (2010). https://doi.org/10.1016/j.msec.2010.06.004

    Article  CAS  Google Scholar 

  32. X. Wang, H. Zhao, L. Turng, Q. Li, Ind. Eng. Chem. Res. 52(13), 4939–4949 (2013). https://doi.org/10.1021/ie302185e

    Article  CAS  Google Scholar 

  33. S.K. Bhullar, D. Rana, H. Lekesiz, A.C. Bedeloglu, J. Ko, Y. Cho, Z. Aytac, T. Uyar, M. Jun, M. Ramalingam, Mater. Sci. Eng. C 81, 334–340 (2017). https://doi.org/10.1016/J.MSEC.2017.08.022

    Article  CAS  Google Scholar 

  34. G. Perumal, P.M. Sivakumar, A.M. Nandkumar, M. Doble, Mater. Sci. Eng. C 109, 110527 (2020). https://doi.org/10.1016/J.MSEC.2019.110527

    Article  CAS  Google Scholar 

  35. S. Fahimirad, P. Satei, A. Ganji, H. Abtahi, J. Biomater. Sci. Polym. Ed. 34(3), 277–301 (2023). https://doi.org/10.1080/09205063.2022.2116209

    Article  CAS  PubMed  Google Scholar 

  36. P. Stafiej, F. Kung, D. Thieme, M. Czugala, F.E. Kruse, D.W. Schubert, T.A. Fuchsluger, Mater. Sci. Eng. C 71, 764–770 (2017). https://doi.org/10.1016/J.MSEC.2016.10.058

    Article  CAS  Google Scholar 

  37. W. Zou, Z. Li, Z. Wang, D. Sun, Wood Mater. Sci. Eng. (2023). https://doi.org/10.1080/17480272.2022.2160657

    Article  Google Scholar 

  38. K. Koenig, N. Balakrishnan, S. Hermanns, F. Langensiepen, G. Seide, Mater. 13(5), 1055 (2020). https://doi.org/10.3390/MA13051055

    Article  CAS  Google Scholar 

  39. K. Sukata, H. Takeuchi, M. Shimada, Y. Agari, J. Appl. Polym. Sci. 101(5), 3270–3274 (2006). https://doi.org/10.1002/APP.23715

    Article  CAS  Google Scholar 

  40. T.U. Rashid, R.E. Gorga, W.E. Krause, Adv. Eng. Mater. 23(9), 2100153 (2021). https://doi.org/10.1002/ADEM.202100153

    Article  Google Scholar 

  41. F. Croisier, A.S. Duwez, C. Jerome, A.F. Leonard, K.O. van der Werf, P.J. Dijkstra, M.L. Bennink, Acta Biomater. 8(1), 218–224 (2012). https://doi.org/10.1016/J.ACTBIO.2011.08.015

    Article  CAS  PubMed  Google Scholar 

  42. W. Lin, Y. Gowayed, J. Appl. Polym. Sci. 74(10), 2386–2396 (1999). https://doi.org/10.1002/(SICI)1097-4628(19991205)74:10%3c2386::AID-APP6%3e3.0.CO;2-U

    Article  CAS  Google Scholar 

  43. J. Ma, T.A. Elmaaty, S. Okubayashi, Autex Res. J. 19(3), 228–235 (2019). https://doi.org/10.1515/aut-2018-0046

    Article  CAS  Google Scholar 

  44. B. Veleirinho, M.F. Rei, J.A. Lopes-Da-Silva, J. Polym. Sci. Part B Polym. Phys. 46(5), 460–471 (2008). https://doi.org/10.1002/POLB.21380

    Article  CAS  Google Scholar 

  45. C.T. Lim, E.P.S. Tan, S.Y. Ng, Appl. Phys. Lett. 92, 141908 (2008). https://doi.org/10.1063/1.2857478

    Article  CAS  Google Scholar 

  46. A. Seeboth, D. Lötzsch, Thermochromic phenomena in polymers. Smithers Rapra Technology, (2008).

  47. R. Kulcar, M. Friskovec, N. Hauptman, A. Vesel, M.K. Gunde, Dyes Pigm. 86(3), 271–277 (2010). https://doi.org/10.1016/j.dyepig.2010.01.014

    Article  CAS  Google Scholar 

  48. R.M. Christie, S. Robertson, S. Taylor, Colour Des. Creat. 1(1), 5 (2007)

    Google Scholar 

  49. M. Ledendal, Ph. D Thesis, Heriot-Watt University, School of Textiles and Design, (2015).

  50. L. Johansson, Ph.D. Thesis, Linköping University, Linköping, Sweden, (2006).

  51. T. Homola, AccessScience (McGraw-Hill Education, New York, NY, USA, 2008)

    Google Scholar 

  52. R. Kulcar, M. Klanjseg Gunde, N. Knesaurek, Acta graphica 23(1–2), 25–36 (2012)

    Google Scholar 

  53. C.K. da Silva, D.J. da Silveira Mastrantonio, J.A. Costa, M.G. de Morais, Food Chem. 294, 397–404 (2019). https://doi.org/10.1016/J.FOODCHEM.2019.05.059

    Article  CAS  PubMed  Google Scholar 

  54. W. Mokrzycki, M. Tatol, Mach. Graph. Vis. 20(4), 383–411 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank to Mehmet Eren Burkay, Burkay Tekstil Co., for providing the thermochromic dye.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebnem Duzyer Gebizli.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 39 KB)

Supplementary file2 (MP4 6015 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duzyer Gebizli, S., Guclu, N., Tiritoglu, M. et al. Reversible Thermochromic Polycaprolactone Nanofibers for Repetitive Usage. Fibers Polym 24, 3393–3403 (2023). https://doi.org/10.1007/s12221-023-00323-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00323-4

Keywords

Navigation