Skip to main content
Log in

Finite Element Analysis and Performance Comparison of Leaf Spring Based on Unidirectional Sisal Fiber-Reinforced Epoxy Composite Against Woven Fiber-Reinforced Composite

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The objective of this work is to examine sisal fiber-reinforced epoxy composite to replace metallic leaf spring in electric vehicles. The fiber is heat treated for the improvement of interfacial strength of the composite, before reinforcing them in epoxy matrix in unidirectional orientation, and woven geometry. Composite prepared from hand-layup method is further investigated to explore the mechanical properties required for the efficient performance of leaf spring. Experimentation reveals the magnitude of tensile, flexural, and impact strengths of the composite to be 65 MPa, 170 MPa, 13 MPa and 53 MPa, 148 MPa, 14 MPa, respectively, for both unidirectional and woven geometry. The thermal response of the fabricated composites is estimated by thermogravimetric analysis (TGA), and the fractured specimens are examined under electron microscope. Experimental results of composites are imported in simulation software for finite element analysis. The result of this investigation shows that maximum deformation and von Mises stress obtained are 59.77 mm, 224.87 MPa and 45.339 mm, 219.23 MPa for unidirectional and woven composite leaf spring, respectively. In addition, scanning electron microscopy (SEM) is used to analyse the strained surfaces to get a better understanding of the microstructure and the process of failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. S. Sahu, S.B. Bhagabati, P.J. Sahu, S. Nayak, M.K. Roul, S.K. Khuntia, Effect of chemical treatment and fiber loading on various properties of Bauhinia vahlii bast fibers/acrylonitrile butadiene styrene composites for automotive body parts. Polym Compos. 43(8), 4909–4918 (2022)

    Article  CAS  Google Scholar 

  2. K. Palani Kumar, A. Shadrach Jeya Sekaran, L. Dinesh, D. Hari Prasad, K. Deepak Kumar, Natural sisal fiber-based woven glass hybrid polymer composites for mono leaf spring: experimental and numerical analysis. Prog. Rubber Plast. Recycl. Technol. 37(1), 32–48 (2021)

    Article  Google Scholar 

  3. Amirin Kusmiran, Muhamad Hidayat, Rita Desiasni, Ahmad Zadi Maad, (2019) “Numerical analysis of Composite with Natural Fiber Reinforcement using Finite Element Method : Leaf Spring Composite Application,” International Conference on Science and Technology, ICOST.

  4. S. Goel, R. Sharma, A. Kumar Rathore, A review on barrier and challenges of electric vehicle in India and vehicle to grid optimisation. Transp Eng. 4, 100057 (2021)

    Article  Google Scholar 

  5. M.I. Khan, C. Nayak, Topology optimization of mono leaf spring for electric vehicle using finite element analysis. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-01073-y

    Article  Google Scholar 

  6. D.K. Rajak, D.D. Pagar, P.L. Menezes, E. Linul, Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers 11(10), 1667 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S. More, D.S. Chaudhari, Design and analysis of sisal filled glass epoxy composite leaf spring. IOSR J. Mech. Civ. Eng. 13(4), 146–155 (2016)

    Article  Google Scholar 

  8. V. Khatkar, B.K. Behera, Influence of different textile structure reinforced composite leaf spring on their fabrication potential. J. Ind. Text. 51(3s), 4949–4972 (2020)

    Google Scholar 

  9. K.L. Pickering, M.G.A. Efendy, T.M. Le, A review of recent developments in natural fibre composites and their mechanical performance. Compos. A Appl. Sci. Manuf. 83, 98–112 (2016)

    Article  CAS  Google Scholar 

  10. A. Sharma, M. Choudhary, P. Agarwal, S.K. Shivam Joshi, A.P. Biswas, Mechanical, thermal and thermomechanical properties of sponge iron slag filled needle-punched nonwoven jute epoxy hybrid composites. Fibers Polym 22(4), 1082–1098 (2021)

    Article  CAS  Google Scholar 

  11. S. Mishra, C. Nayak, M.K. Sharma, U.K. Dwivedi, Influence of coir fiber geometry on mechanical properties of SiC filled epoxy composites. SILICON 13(2), 301–307 (2021)

    Article  CAS  Google Scholar 

  12. M.K. Lila, G.K. Saini, M.K. Kannan, I. Singh, Effect of fiber type on thermal and mechanical behavior of epoxy-based composites. Fibers Polym 18(4), 806–810 (2017)

    Article  CAS  Google Scholar 

  13. S. Parashar, V.K. Chawla, A systematic review on sustainable green fibre reinforced composite and their analytical models. Mater Today Proc 46, 6541–6546 (2020)

    Article  Google Scholar 

  14. U.K. Dwivedi, N. Chand, Influence of MA-g-PP on abrasive wear behaviour of chopped sisal fibre reinforced polypropylene composites. J. Mater. Process. Technol. 209(12–13), 5371–5375 (2009)

    Article  CAS  Google Scholar 

  15. S. Gangwar, V.K. Pathak, A critical review on tribological properties, thermal behavior, and different applications of industrial waste reinforcement for composites. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl 235(3), 684–706 (2021)

    Google Scholar 

  16. D. Sen, K.G. Chitresh Nayak, S.B. Sudhakar, Mechanical properties of fabricated hybrid composites infused with heat-treated alkali sisal fiber and SiC particles: a quantitative analysis. Polym. Bull. 78(8), 4629–4648 (2021)

    Article  CAS  Google Scholar 

  17. A. Saha, S. Kumar, D. Zindani, S. Bhowmik, Micro-mechanical analysis of the pineapple-reinforced polymeric composite by the inclusion of pineapple leaf particulates. Proc. Inst. Mech. Eng. L: J. Mater.: Des. Appl 235(5), 1112–1127 (2021)

    CAS  Google Scholar 

  18. S.B.R. Devireddy, S. Biswas, Thermo-physical properties of short banana–jute fiber-reinforced epoxy-based hybrid composites. Proc. Inst. Mech. Eng. L: J. Mater.: Des. Appl. 232(11), 939–951 (2018)

    CAS  Google Scholar 

  19. S. Sathees Kumar, V. Mugesh Raja, Ch. Nithin Chakravarthy, R. Muthalagu, Determination of mechanical properties and characterization of alkali treated sugarcane bagasse, pine apple leaf and sisal fibers reinforced hybrid polyester composites for various applications. Fibers Polym 22, 1675–1683 (2021)

    Article  CAS  Google Scholar 

  20. L. Ma, J. He, Gu. Yizhuo, Z. Zhang, Yu. Zechuan, Ao. Zhou, L.-h Tam, Wu. Chao, Structure design of gfrp composite leaf spring: an experimental and finite element analysis. Polymers 13(8), 1193 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. V. Khatkar, B.K. Behera, Experimental investigation of composite leaf spring reinforced with various fiber architecture. Adv. Compos. Mater 29(2), 129–145 (2020)

    Article  CAS  Google Scholar 

  22. P. Sahu, M.K. Gupta, Eco-friendly treatment and coating for improving the performance of sisal composites. Polym. Testing 93, 106923 (2021)

    Article  CAS  Google Scholar 

  23. X. Zou, B. Zhang, G. Yin, Analysis of stiffness and damping performance of the composite leaf spring. Sci. Rep. 12(1), 1–10 (2022)

    Article  Google Scholar 

  24. J. Jancirani, H. Assarudeen, A review on structural analysis and experimental investigation of fiber reinforced composite leaf spring. J. Reinf. Plast. Compos. 34(2), 95–100 (2015)

    Article  CAS  Google Scholar 

  25. V. Kukshal, S. Gangwar, A. Patnaik, Experimental and finite element analysis of mechanical and fracture behavior of SiC particulate filled A356 alloy composites: part I. Proc. Inst. Mech. Eng. L: J. Mater.: Des. Appl. 229(2), 91–105 (2015)

    Google Scholar 

  26. V. Kukshal, S. Gangwar, A. Patnaik, Experimental and finite element analysis of mechanical and fracture behaviour of Al2O3 particulate filled A356 alloy composites: part II. Proc. Inst. Mech. Eng. L: J. Mater.: Des. Appl 229(1), 64–76 (2015)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chitresh Nayak.

Ethics declarations

Conflict of Interest

The authors expresses that this article has not submitted elsewhere and there is no irreconcilable circumstance to unveil.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.I., Nayak, C. Finite Element Analysis and Performance Comparison of Leaf Spring Based on Unidirectional Sisal Fiber-Reinforced Epoxy Composite Against Woven Fiber-Reinforced Composite. Fibers Polym 24, 3333–3343 (2023). https://doi.org/10.1007/s12221-023-00303-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00303-8

Keywords

Navigation