Skip to main content
Log in

Investigation of Silver Conductive Ink Printable on Textiles for Wearable Electronics Applications: Effect of Silver Concentration and Polymer Matrix

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This research paper presents the results of an investigation into the formulation of silver conductive ink for use in inkjet printing. The aim of the study is to develop an environmentally friendly and cost-effective ink using a simple and scalable method. To achieve this, silver nanoparticles (AgNPs) were synthesized through a co-reduction approach using starch and temperature, and their physical and chemical properties were examined. The silver conductive ink was prepared with different amounts of AgNPs, using a sodium alginate/ Polyethylene glycol (Na-alginate/PEG) suspension matrix. In order to ensure the suitability of ink for the inkjet printing technique, the viscosity measurement was performed. According to the results, three formulations were produced and printed on Polyurethane-coated polyester (PU-coated PET) by a syringe disposition system. The electrical measurements showed that the minimum sheet resistance of printed patterns prepared with 3%wt of AgNPs was 0.008 Ω/cm and 0.205 Ω/cm with 20wt% and 40wt% of Na-alginate, respectively. These values are sufficient to power an LED connected to the printed coated fabric. Furthermore, the electrical properties of the printed patterns remained acceptable for electronic applications even after mechanical stress up to 20%. This research has the potential to pave the way for several future applications of printed electronic textiles where environmentally friendly, low-cost, and higher electrical performance inks are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The authors confirm that all data generated or used during the study are available in the article and the supplementary materials.

References

  1. D. Chen, M. Lawo, in Smart textiles: fundamentals, design, and interaction. ed. by S. Schneegass, O. Amft (Springer International Publishing, Cham, 2017), pp.333–357

    Google Scholar 

  2. P.I. Dolez, J. Mlynarek, Smart textiles and their applications (Elsevier, 2016), pp.497–517

    Google Scholar 

  3. Y. Ma, J. Ouyang, T. Raza, P. Li, A. Jian, Z. Li, H. Liu, M. Chen, X. Zhang, L. Qu, M. Tian, G. Tao, Nano Energy 85, 105941 (2021)

    CAS  Google Scholar 

  4. S.J. Lim, J.H. Bae, S.J. Jang, J.Y. Lim, J.H. Ko, Fibers Polym 19, 2622 (2018)

    Google Scholar 

  5. A. Boumegnane, A. Nadi, C. Cochrane, F. Boussu, O. Cherkaoui, M. Tahiri, Text. Prog. 54, 103 (2022)

    Google Scholar 

  6. Y. Zhang, T. Zhang, Z. Huang, J. Yang, Adv. Sci. 9, 2105084 (2022)

    Google Scholar 

  7. C. Zhu, J. Wu, J. Yan, X. Liu, Adv. Fiber Mater. 5, 12 (2023)

    Google Scholar 

  8. G. Chen, X. Xiao, X. Zhao, T. Tat, M. Bick, J. Chen, Chem. Rev. 122, 3259 (2022)

    CAS  PubMed  Google Scholar 

  9. Md. M. Hossain, P.D. Bradford in Nanosensors and Nanodevices for Smart Multifunctional Textiles, ed. by A Ehrmann, T.A. Nguyen, P. Nguyen Tri (Elsevier, 2021), pp. 27–53

  10. R. Xu, M. She, J. Liu, S. Zhao, H. Liu, L. Qu, M. Tian, Adv. Fiber Mater. 4, 1525 (2022)

    Google Scholar 

  11. B. Tian, Y. Fang, J. Liang, K. Zheng, P. Guo, X. Zhang, Y. Wu, Q. Liu, Z. Huang, C. Cao, W. Wu, Small 18, 2107298 (2022)

    CAS  Google Scholar 

  12. F. Alhashmi Alamer, N.M. Badawi, O. Alsalmi, J. Electron. Mater., 49, 6582 (2020)

  13. F. Marra, S. Minutillo, A. Tamburrano, M.S. Sarto, Mater. Des 198, 109306 (2021)

    CAS  Google Scholar 

  14. Md.S. Sadi, M. Yang, L. Luo, D. Cheng, G. Cai, X. Wang, Cellulose 26, 6179 (2019)

    CAS  Google Scholar 

  15. X. Xu, M. Luo, P. He, X. Guo, J. Yang, Appl. Phys. A 125, 714 (2019)

    Google Scholar 

  16. H. Hong, L. Jiang, H. Tu, J. Hu, K.-S. Moon, X. Yan, C. Wong, J. Mater. Sci. Technol 101, 294 (2022)

    CAS  Google Scholar 

  17. D. Janczak, M. Zych, T. Raczyński, Ł Dybowska-Sarapuk, A. Pepłowski, J. Krzemiński, A. Sosna-Głębska, K. Znajdek, M. Sibiński, M. Jakubowska, Nanomaterials 9, 1276 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. M. Zabihipour, R. Lassnig, J. Strandberg, M. Berggren, S. Fabiano, I. Engquist, P. Andersson Ersman (2020), Npj Flex Electron, 4, 15

  19. H. Shahariar, I. Kim, H. Soewardiman, J.S. Jur, A.C.S. Appl, Mater. Interfaces 11, 6208 (2019)

    CAS  Google Scholar 

  20. S.K. Karunakaran, G.M. Arumugam, W. Yang, S. Ge, S.N. Khan, X. Lin, G. Yang, J. Mater. Chem. A 7, 13873 (2019)

    CAS  Google Scholar 

  21. N. Li, C. Ho, K. Yick, J. Zhou, Fibers Polym 21, 2788 (2020)

    CAS  Google Scholar 

  22. B. Krykpayev, M.F. Farooqui, R.M. Bilal, M. Vaseem, A. Shamim, Microelectron J 65, 40 (2017)

    Google Scholar 

  23. B. Hwang, A. Lund, Y. Tian, S. Darabi, C. Müller, A.C.S. Appl, Mater. Interfaces 12, 27537 (2020)

    CAS  Google Scholar 

  24. N.Y.K. Lam, J. Tan, A. Toomey, K.C.J. Cheuk, Fash Text 9, 39 (2022)

    Google Scholar 

  25. U. Kraft, F. Molina-Lopez, D. Son, Z. Bao, B. Murmann, Adv. Electron. Mater. 6, 1900681 (2020)

    CAS  Google Scholar 

  26. S. Stříteský, A. Marková, J. Víteček, E. Šafaříková, M. Hrabal, L. Kubáč, L. Kubala, M. Weiter, M. Vala, J Biomed Mater Res A 106, 1121 (2018)

    PubMed  Google Scholar 

  27. D.S. Saidina, M. Mariatti, S.A. Zubir, S. Fontana, C. Hérold, J Mater Sci: Mater Electron 30, 19906 (2019)

    CAS  Google Scholar 

  28. T.S. Tran, N.K. Dutta, N.R. Choudhury, Adv Colloid Interface Sci 261, 41 (2018)

    CAS  PubMed  Google Scholar 

  29. N.S. Shabanov, KSh. Rabadanov, S.I. Suleymanov, A.M. Amirov, A.B. Isaev, D.S. Sobola, E.K. Murliev, G.A. Asvarova, Materials 14, 2218 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. M. Rafiq, R.S. Khan, A.H. Rather, T.U. Wani, A. Qureashi, A.H. Pandith, S. Rather, F.A. Sheikh, Microelectron. Eng 266, 111889 (2022)

    CAS  Google Scholar 

  31. H.Y. Jun, E.J. Lee, S.O. Ryu, Curr. Appl. Phys. 20, 853 (2020)

    Google Scholar 

  32. A. Boumeganane, A. Nadi, O. Cherkaoui, M. Tahiri, Mater Today Proc 58, 1235 (2022)

    CAS  Google Scholar 

  33. Y.Z.N. Htwe, M.K. Abdullah, M. Mariatti, Synth. Met 274, 116719 (2021)

    CAS  Google Scholar 

  34. J. Dong, G. Portale, Adv. Mater. Interfaces 7, 2000641 (2020)

    CAS  Google Scholar 

  35. X. Fan, W. Nie, H. Tsai, N. Wang, H. Huang, Y. Cheng, R. Wen, L. Ma, F. Yan, Y. Xia, Adv. Sci. 6, 1900813 (2019)

    CAS  Google Scholar 

  36. V. Badineni, H. Maseed, S. K. Arla, S. Yerramala, B. Vijaya Kumar Naidu, K. Kaviyarasu, Mater Today Proc, 36, 121 (2021)

  37. A. Bouafia, S. E. Laouini, A. S. A. Ahmed, A. V. Soldatov, H. Algarni, K. Feng Chong, G. A. M. Ali, Nanomaterials, 11, 2318 (2021)

  38. S. Martinez-Crespiera, B. Pepió-Tàrrega, R.M. González-Gil, F. Cecilia-Morillo, J. Palmer, A.M. Escobar, S. Beneitez-Álvarez, T. Abitbol, A. Fall, C. Aulin, Y. Nevo, V. Beni, E. Tolin, A. Bahr, IJMS 23, 2946 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. M. Fernandes, J. Padrão, A.I. Ribeiro, R.D.V. Fernandes, L. Melro, T. Nicolau, B. Mehravani, C. Alves, R. Rodrigues, A. Zille, Nanomaterials 12, 1006 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Y. Cai, X. Yao, X. Piao, Z. Zhang, E. Nie, Z. Sun, Chem. Phys. Lett. 737, 136857 (2019)

    CAS  Google Scholar 

  41. A. Boumegnane, A. Batine, A. Nadi, A. Dahrouch, A. Stambouli, O. Cherkaoui, M. Tahiri, IOP Conf. Ser.: Mater. Sci. Eng. 1266, 012006 (2023).

  42. N. Koga, S. Yamada, T. Kimura, J. Phys. Chem. C 117, 326 (2013)

    CAS  Google Scholar 

  43. L. David, B. Moldovan, Nanomaterials 10, 202 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. B.M. Abu-Zied, A.M. Asiri, Thermochim. Acta 581, 110 (2014)

    CAS  Google Scholar 

  45. C.-W. Chang, T.-Y. Cheng, Y.-C. Liao, J. Taiwan Inst. Chem. Eng. 92, 8 (2018)

    CAS  Google Scholar 

  46. A. Pajor-Świerzy, K. Szczepanowicz, A. Kamyshny, S. Magdassi, Adv. Colloid Interface Sci. 299, 102578 (2022)

    PubMed  Google Scholar 

  47. Z. Khan, S. A. AL-Thabaiti, A. Y. Obaid, Z. A. Khan, A. O. Al-Youbi, Colloids Surf. A, 390, 120 (2011).

  48. X. Yu, N. Jiang, X. Miao, R. Zong, Y. Sheng, C. Li, S. Lu, Colloids Surf. A 591, 124545 (2020)

    CAS  Google Scholar 

  49. X. Wang, W.W. Carr, D.G. Bucknall, J.F. Morris, Rev. Sci. Instrum. 81, 065106 (2010)

    PubMed  Google Scholar 

  50. M.S. Sarwar, A. Ghaffar, Q. Huang, M.S. Zafar, M. Usman, M. Latif, Int. J. Biol. Macromol. 165, 1047 (2020)

    CAS  PubMed  Google Scholar 

  51. J. Shi, H. Zhang, Y. Yu, M. Yan, L. Liu, H. Zhu, Y. Ye, Y. Zhao, Y. Wang, Y. Xia, J. Guo, New J. Chem. 44, 17431 (2020)

    CAS  Google Scholar 

  52. Y.H. Wang, D.X. Du, H. Xie, X.B. Zhang, K.W. Lin, K. Wang, E. Fu, J Mater Sci: Mater Electron 32, 496 (2021)

    CAS  Google Scholar 

  53. I. Kim, B. Ju, Y. Zhou, B.M. Li, J.S. Jur, A.C.S. Appl, Mater. Interfaces 13, 24081 (2021)

    CAS  Google Scholar 

  54. H. Kao, C.-H. Chuang, L.-C. Chang, C.-L. Cho, H.-C. Chiu, Surf. Coat. Technol 362, 328 (2019)

    CAS  Google Scholar 

  55. S. Jiang, D. Miao, A. Li, R. Guo, S. Shang, Fibers Polym 17, 1397 (2016)

    CAS  Google Scholar 

  56. H. Kao, C.-L. Cho, L.-C. Chang, C.-S. Yeh, B.-W. Wang, H.-C. Chiu, Thin Solid Films 544, 64 (2013)

    CAS  Google Scholar 

  57. J. Woo, H. Lee, C. Yi, J. Lee, C. Won, S. Oh, J. Jekal, C. Kwon, S. Lee, J. Song, B. Choi, K.-I. Jang, T. Lee, Adv. Funct. Mater 30, 1910026 (2020)

    CAS  Google Scholar 

  58. L. Gan, S. Shang, C.W.M. Yuen, S. Jiang, Compos. Sci. Technol. 117, 208 (2015)

    CAS  Google Scholar 

  59. I.J. Fernandes, A.F. Aroche, A. Schuck, P. Lamberty, C.R. Peter, W. Hasenkamp, T.L.A.C. Rocha, Sci. Rep. 10, 8878 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  60. L. Cao, X. Bai, Z. Lin, P. Zhang, S. Deng, X. Du, W. Li, Materials 10, 1004 (2017)

    PubMed  PubMed Central  Google Scholar 

  61. K. Balantrapu, D.V. Goia, J. Mater. Res. 24, 2828 (2009)

    CAS  Google Scholar 

  62. F. Hoeng, J. Bras, E. Gicquel, G. Krosnicki, A. Denneulin, RSC Adv. 7, 15372 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Yassine CHAKIR, a Teacher at the Higher School of Textile and Clothing Industries (ESITH), for his English proofreading. In addition, the textile research laboratory direction (REMTEX) from ESITH for its financial support and availability, as well as the Ain Chock Faculty of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayoub Nadi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 964 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boumegnane, A., Nadi, A., Dahrouch, A. et al. Investigation of Silver Conductive Ink Printable on Textiles for Wearable Electronics Applications: Effect of Silver Concentration and Polymer Matrix. Fibers Polym 24, 2977–2993 (2023). https://doi.org/10.1007/s12221-023-00276-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00276-8

Keywords

Navigation