Skip to main content
Log in

A Sustainable Approach in the Development of Nano-silver Deposited Conductive Cellulosic Fabric: A Comparison of Various Bio-based Reductants

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The textile materials produced with nanoparticles’ mediation give them diverse functional features including antibacterial activity, optical and structural features, tensile properties, self-cleaning, electrical conductivity and so on. Accordingly, conductive textiles may promise widespread applications in electronics, sensing, diagnostics, data transfer and so on. Herein, we compared the effectiveness of three different bio-based reductants of black tea extract, chitosan and starch for the in situ synthesis and impregnation of silver nanoparticles (SNPs) on the cellulose fabric to get effective conducting textiles. The results demonstrated that the z-average of the prepared silver-based particles was found in the nanometer range and they were well stable in the aqueous media. The surface chemical analysis exhibited that the SNPs were successfully impregnated on the finished cellulose fabric and affected its surface roughness and crystalline properties. The AC conductivity scan of the finished fabrics expressed that they become conductive of electricity, however, the highest effect was seen when black tea extract as a reductant during the application of SNPs in the fabric. The SNPs-treated samples expressed slightly decreased air permeability and tensile strength as compared to the untreated sample. After silver nano-finishing, the cellulosic samples turned from whitish to yellow to dark brown. They exhibited good broad-spectrum qualitative and quantitative antibacterial activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Chen, Y. Li, M. Bick, J. Chen. Chem. Rev. 120, 3668 (2020). https://doi.org/10.1021/acs.chemrev.9b00821

    Article  CAS  Google Scholar 

  2. H. Zhao, M. Tian, Z. Li, Y. Zhang, S. Zhu, X. Zhang, S. Chen, L. Qu, Mat. Lett. 240, 5 (2019). https://doi.org/10.1016/j.matlet.2018.12.052

    Article  CAS  Google Scholar 

  3. M.J. Bakhtiyar, Z.A. Raza, M. Aslam, S.Z. Bajwa, M.S. Rehman, S. Rafiq, Int. J. Biol. Macromol. 213, 1018 (2022). https://doi.org/10.1016/j.ijbiomac.2022.06.018

    Article  CAS  PubMed  Google Scholar 

  4. Y.N. Gao, Y. Wang, T.N. Yue, Y.X. Weng, M. Wang, J. Colloid Interface Sci. 582, 112 (2021). https://doi.org/10.1016/j.jcis.2020.08.037

    Article  CAS  PubMed  Google Scholar 

  5. M. Yousaf, Z.A. Raza, M. Aslam, M.S. Rehman, J. Nat. Fibers (2022). https://doi.org/10.1080/15440478.2022.2111626

    Article  Google Scholar 

  6. L. Soltys, O. Olkhovyy, T. Tatarchuk, M. Naushad, Magnetochemistry 7, 145 (2021). https://doi.org/10.3390/magnetochemistry7110145

    Article  CAS  Google Scholar 

  7. S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci. 9, 385 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. M.A. Labelle, P. Ispas-Szabo, M.A. Mateescu, Starch 72, 2000002 (2020). https://doi.org/10.1002/star.202000002

    Article  CAS  Google Scholar 

  9. F. Wang, R. Chang, R. Ma, H. Qiu, Y. Tian, A.C.S. Sustain, Chem. Eng. 9, 10142 (2021). https://doi.org/10.1021/acssuschemeng.1c02090

    Article  CAS  Google Scholar 

  10. R.M. El-Shishtawy, N.S. Ahmed, Y.Q. Almulaiky, Catalysts 11, 820 (2021). https://doi.org/10.3390/catal11070820

    Article  CAS  Google Scholar 

  11. Z.A. Raza, S. Khalil, A. Ayub, I.M. Banat, Carbohydr. Res. 492, 108004 (2020). https://doi.org/10.1016/j.carres.2020.108004

    Article  CAS  PubMed  Google Scholar 

  12. S. Bansal, S. Choudhary, M. Sharma, S.S. Kumar, S. Lohan, V. Bhardwaj, N. Syan, S. Jyoti, Food Res. Int. 53, 568 (2013). https://doi.org/10.1016/j.foodres.2013.01.032

    Article  CAS  PubMed Central  Google Scholar 

  13. P. Basnet, D. Samanta, T.I. Chanu, J. Mukherjee, S. Chatterjee, Mater. Res. Express 6, 085095 (2019). https://doi.org/10.1088/2053-1591/ab234e

    Article  CAS  Google Scholar 

  14. T. Zhang, R.A. Sanguramath, S. Israel, M.S. Silverstein, Macromolecules 52, 5445 (2019). https://doi.org/10.1021/acs.macromol.8b02576

    Article  CAS  Google Scholar 

  15. X. Huang, T. Jiao, Q. Liu, L. Zhang, J. Zhou, B. Li, Q. Peng, Sci. China Mater. 62, 423–436 (2019). https://doi.org/10.1007/s40843-018-9320-4

    Article  CAS  Google Scholar 

  16. X. Huang, R. Wang, T. Jiao, G. Zou, F. Zhan, J. Yin, L. Zhang, J. Zhou, Q. Peng, ACS Omega 4, 1897–1906 (2019). https://doi.org/10.1021/acsomega.8b03615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. J. Yin, F. Zhan, T. Jiao, H. Deng, G. Zou, Z. Bai, Q. Zhang, Q. Peng, Chin. Chem. Lett. 31, 992–995 (2020). https://doi.org/10.1016/j.cclet.2019.08.047

    Article  CAS  Google Scholar 

  18. S. López-Ibáñez, P. Magadán-Corpas, L. Fernández-Calleja, Á. Pérez-Valero, M. Tuñón-Granda, E.M. Miguélez, C.J. Villar, F. Lombó, Antioxidants 10, 1264 (2021). https://doi.org/10.3390/antiox10081264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. T. Zhang, Y. Zheng, D.J. Cosgrove, Plant J. 85, 179 (2016). https://doi.org/10.1111/tpj.13102

    Article  CAS  PubMed  Google Scholar 

  20. M. Wohlert, T. Benselfelt, L. Wågberg, I. Furó, L.A. Berglund, J. Wohlert, Cellulose 29, 1 (2022). https://doi.org/10.1007/s10570-021-04325-4

    Article  CAS  Google Scholar 

  21. Z.A. Raza, U. Bilal, U. Noreen, S.A. Munim, S. Riaz, M.U. Abdullah, S. Abid, Fiber Polym. 20, 1360 (2019). https://doi.org/10.1007/s12221-019-1018-y

    Article  CAS  Google Scholar 

  22. B. Reidy, A. Haase, A. Luch, K.A. Dawson, I. Lynch, Materials 6, 2295 (2013). https://doi.org/10.3390/ma6062295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. A.S. Montaser, F.A. Mahmoud, Int. J. Biol. Macromol. 124, 659 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.254

    Article  CAS  PubMed  Google Scholar 

  24. M. Fortea-Verdejo, K.-Y. Lee, T. Zimmermann, A. Bismarck, Compos. A Appl. Sci. Manuf. 83, 63–71 (2016). https://doi.org/10.1016/j.compositesa.2015.11.021

    Article  CAS  Google Scholar 

  25. A. Mautner, M. Hakalahti, V. Rissanen, T. Tammelin, in Nanocellulose and Sustainability: Production, Properties, Applications and Case Studies, ed. K.Y. Lee (CRC Press, Boca Raton, 2018). https://doi.org/10.1201/9781351262927-6

  26. T. Hong, J.Y. Yin, S.P. Nie, M.Y. Xie, Food Chem. X 12, 100168 (2021). https://doi.org/10.1016/j.fochx.2021.100168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M. Fiedot-Toboła, A. Dmochowska, B. Potaniec, J. Czajkowska, R. Jędrzejewski, M. Wilk-Kozubek, E. Carolak, J. Cybińska, Nanomaterials 11, 1816 (2021). https://doi.org/10.3390/nano11071816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. C. Huang, Y. Cai, X. Chen, Y. Ke, Cellulose 29, 723 (2022). https://doi.org/10.1007/s10570-021-04257-z

    Article  CAS  PubMed  Google Scholar 

  29. Z.A. Raza, M. Aslam, A. Azeem, H.S. Maqsood, Mater. Werkst. 50, 64 (2019). https://doi.org/10.1002/mawe.201800081

    Article  CAS  Google Scholar 

  30. M.L. Troedec, D. Sedan, C. Peyratout, J.P. Bonnet, A. Smith, R. Guinebretiere, V. Gloaguen, P. Krausz, Compos. A Appl. Sci. Manuf. 39, 514 (2008). https://doi.org/10.1016/j.compositesa.2007.12.001

    Article  CAS  Google Scholar 

  31. X. Ju, M. Bowden, E.E. Brown, X. Zhang, Carbohydr. Polym. 123, 476 (2015). https://doi.org/10.1016/j.carbpol.2014.12.071

    Article  CAS  PubMed  Google Scholar 

  32. H. Chen, N. Yang, C. Qin, W. Li, B. Wang, T. Han, C. Zhang, W. Liu, K. Wang, H. Long, X. Zhang, P. Lu, Light Sci. Appl. 10, 48 (2021). https://doi.org/10.1038/s41377-021-00494-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D. Coetzee, M. Venkataraman, J. Militky, M. Petru, Influence of nanoparticles on thermal and electrical conductivity of composites. Polymers 12, 742 (2020). https://doi.org/10.3390/polym12040742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. F. Zhang, G. Liu, W. Shen, S. Gurunathan, Int. J. Mol. Sci. 17, 1534 (2016). https://doi.org/10.3390/ijms17091534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. A. Ali, V. Baheti, J. Militky, Z. Khan, J. Appl. Polym. Sci. 135, 46357 (2018). https://doi.org/10.1002/app.46357

    Article  CAS  Google Scholar 

  36. S. Salave, D. Rana, A. Sharma, K. Bharathi, R. Gupta, S. Khode, D. Benival, N. Kommineni, Polysaccharides 3, 625 (2022). https://doi.org/10.3390/polysaccharides3030037

    Article  CAS  Google Scholar 

  37. H.R. Hong, J. Kim, C.H. Park, RSC Adv. 8, 41782 (2018). https://doi.org/10.1039/C8RA08310J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. S. Habib, F. Kishwar, Z.A. Raza, Pigment Resin Technol. (2020). https://doi.org/10.1108/PRT-06-2022-0077

    Article  Google Scholar 

  39. J.V. Vastrad, P. Badanayak, G. Goudar, in Phenolic Compounds—Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications. Biochemistry (2022).https://doi.org/10.5772/intechopen.94825

  40. A. Syafiuddin, M.A. Fulazzaky, S. Salmiati, M. Roestamy, M. Fulazzaky, K. Sumeru, Z. Yusop, S.N. Appl, Science 2, 733 (2020). https://doi.org/10.1007/s42452-020-2534-5

    Article  CAS  Google Scholar 

  41. K.J. Falua, A. Pokharel, A. Babaei-Ghazvini, Y. Ai, B. Acharya, Polymers 14, 2215 (2022). https://doi.org/10.3390/polym14112215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. L. Wang, C. Hu, L. Shao, Int. J. Nanomed. 12, 1227 (2017). https://doi.org/10.2147/IJN.S121956)

    Article  CAS  Google Scholar 

  43. E.O. Mikhailova, Silver nanoparticles: mechanism of action and probable bio-application. J. Funct. Biomater. 11, 84 (2020). https://doi.org/10.3390/jfb11040084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. S. Srisod, K. Motina, T. Inprasit, P. Pisitsak, Prog. Org. Coat. 120, 123 (2018). https://doi.org/10.1016/j.porgcoat.2018.03.007

    Article  CAS  Google Scholar 

  45. S. Mahmud, M.Z. Sultana, M.N. Pervez, M.A. Habib, H.H. Liu, Fibers 5, 35 (2017). https://doi.org/10.3390/fib5030035

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for this work from any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulfiqar Ali Raza.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, Z.A., Rehan, S., Naeem, M.S. et al. A Sustainable Approach in the Development of Nano-silver Deposited Conductive Cellulosic Fabric: A Comparison of Various Bio-based Reductants. Fibers Polym 24, 2731–2741 (2023). https://doi.org/10.1007/s12221-023-00270-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00270-0

Keywords

Navigation