Skip to main content
Log in

Effect of Thread Count on the Shear Mechanical Properties and Dynamic Mechanical Properties of Shape Memory Polymer Reinforced by Single-Ply Weave Fabric

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Shape memory epoxy polymer reinforced by single-ply weave fabric (SMEP-W) possesses high specific stiffness, good foldability, and satisfactory shape memory capability. These advantages make them promising materials for deployable space structures and increasingly attract research interests. Understanding the influence of weave structures on static and dynamic mechanical properties is crucial to structural design and mechanical response prediction. In this paper, a recently developed SMEP-W was prepared. The static shear experiments were conducted through modified shear test fixtures, and the stress field under static shear load was simulated through a multi-scale numerical modelling method. The dynamic mechanical analysis was carried out to evaluate the shape memory capability. SMEP-W shows nonlinear mechanical behavior under in-plane shear load, especially for the one with less thread count. The increase in the number of threads enhances the constraints between warp yarns and weft yarns, leading to an increase in shear modulus and reducing the scattering of static mechanical properties. The stress distribution on the yarns has the characteristic of center symmetry. High-stress regions appear on the overlapping surface of the crossover regions. Compared with shape memory epoxy polymer (SMEP), the glass transition temperature and damping coefficient of SMEP-W are significantly reduced, and the stiffness is remarkably enhanced. The difference in thread count between warp direction and weft direction does not notably affect the glass transition temperature and tan δ, but has a remarkable influence on the storage modulus. The present work could provide basic observation for understanding the influence of thread count on the shear mechanical properties and dynamic mechanical properties of SMEP-W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Wang K, Jia Y-G, Zhao C, Zhu XX. Multiple and two-way reversible shape memory polymers: Design strategies and applications. Prog Mater Sci 2019;105:100572. https://doi.org/10.1016/j.pmatsci.2019.100572.

  2. N. Zheng, G. Fang, Z. Cao, Q. Zhao, T. Xie, High strain epoxy shape memory polymer. Polym. Chem. 6, 3046–3053 (2015). https://doi.org/10.1039/C5PY00172B

    Article  CAS  Google Scholar 

  3. J. Gao, W. Chen, B. Yu, P. Fan, B. Zhao, J. Hu, D. Zhang, G. Fang, F. Peng, Effect of temperature on the mechanical behaviours of a single-ply weave-reinforced shape memory polymer composite. Compos. Part B Eng. 159, 336–345 (2019). https://doi.org/10.1016/j.compositesb.2018.09.029

    Article  CAS  Google Scholar 

  4. Guo A, Kong D, Zhou X, Kong H, Qu P, Wang S, Wang H, Hu Y. Method for preparing damage-resistant 3D-printed ceramics via interior-to-exterior strengthening and toughening. Addit. Manuf. 2022;60:103272. https://doi.org/10.1016/j.addma.2022.103272.

  5. Guo S, Wang M, Sui S, Li J, Chen H, Hao X, Zhao X, Lin X. Research on optimizing strength and ductility of HfNbTaZr dual-phase high-entropy alloy by tuning chemical short-range order. Int. J. Refract Met. Hard Mater. 2022;108:105942. https://doi.org/10.1016/j.ijrmhm.2022.105942.

  6. Y. Qian, J. Shi, H. Sun, Y. Chen, Q. Wang, Vector solid texture synthesis using unified RBF-based representation and optimization. Vis. Comput. (2022). https://doi.org/10.1007/s00371-022-02541-y

    Article  Google Scholar 

  7. Luo L, Zhang F, Leng J. Multi-performance shape memory epoxy resins and their composites with narrow transition temperature range. Compos Sci Technol 2021;213:108899. https://doi.org/10.1016/j.compscitech.2021.108899.

  8. M.J. Jo, H. Choi, G.H. Kim, W.-R. Yu, M. Park, Y. Kim, J. Park, J. Youk, Preparation of epoxy shape memory polymers for deployable space structures using flexible diamines. Fibers. Polym. 19, 1799–1805 (2018). https://doi.org/10.1007/s12221-018-8549-5

    Article  CAS  Google Scholar 

  9. J. Hu, W. Chen, P. Fan, J. Gao, G. Fang, Z. Cao, G. Fang, Z. Cao, D. Peng, Uniaxial tensile tests and dynamic mechanical analysis of satin weave reinforced epoxy shape memory polymer composite. Polym. Test 64, 235–241 (2017). https://doi.org/10.1016/j.polymertesting.2017.09.038

    Article  CAS  Google Scholar 

  10. P. Turner, T. Liu, X. Zeng, K. Brown, Three-dimensional woven carbon fibre polymer composite beams and plates under ballistic impact. Compos. Struct. 185, 483–495 (2018). https://doi.org/10.1016/j.compstruct.2017.10.091

    Article  Google Scholar 

  11. Guo L, Liao F, Xu Y, Wang T, Yang C, Yuan J. Experimental method and failure mechanisms investigation for out-of-plane shear fatigue behavior of 3D woven composites. Int. J. Fatigue 2020;134:105501. https://doi.org/10.1016/j.ijfatigue.2020.105501.

  12. R. Mishra, J. Militky, N. Gupta, R. Pachauri, B.K. Behera, Modelling and simulation of earthquake resistant 3D woven textile structural concrete composites. Compos. Part B Eng. 81, 91–97 (2015). https://doi.org/10.1016/j.compositesb.2015.07.008

    Article  CAS  Google Scholar 

  13. Thakre P, Lagoudas D, Zhu J, Barrera E, Gates T. Processing and Characterization of Epoxy/SWCNT/Woven Fabric Composites. 47th AIAAASMEASCEAHSASC Struct. Struct. Dyn. Mater. Conf. 14th AIAAASMEAHS Adapt. Struct. Conf. 7th, Newport, Rhode Island: American Institute of Aeronautics and Astronautics; 2006. https://doi.org/10.2514/6.2006-1857.

  14. S. Jiang, A. Greiner, S. Agarwal, Short nylon-6 nanofiber reinforced transparent and high modulus thermoplastic polymeric composites. Compos. Sci. Technol. 87, 164–169 (2013). https://doi.org/10.1016/j.compscitech.2013.08.011

    Article  CAS  Google Scholar 

  15. S. Wang, J. Zhang, A. Guo, S. Liang, Buckling performance of co-cured and stiffened composite structure with embedded multilayer damping membranes. Polym. Compos. 43, 7403–7419 (2022). https://doi.org/10.1002/pc.26821

    Article  CAS  Google Scholar 

  16. I. Goda, Z. Zubair, G. L’Hostis, J.-Y. Drean, Design and characterization of 3D multilayer woven reinforcements shape memory polymer composites. J. Compos. Mater. 55, 653–673 (2021). https://doi.org/10.1177/0021998320958178

    Article  CAS  Google Scholar 

  17. T. Gereke, O. Döbrich, M. Hübner, C. Cherif, Experimental and computational composite textile reinforcement forming: a review. Compos. Part Appl. Sci. Manuf. 46, 1–10 (2013). https://doi.org/10.1016/j.compositesa.2012.10.004

    Article  CAS  Google Scholar 

  18. L. Santo, F. Quadrini, P.L. Ganga, V. Zolesi, Mission BION-M1: Results of RIBES/FOAM2 experiment on shape memory polymer foams and composites. Aerosp. Sci Technol 40, 109–114 (2015). https://doi.org/10.1016/j.ast.2014.11.008

    Article  Google Scholar 

  19. L. Puig, A. Barton, N. Rando, A review on large deployable structures for astrophysics missions. Acta. Astronaut. 67, 12–26 (2010). https://doi.org/10.1016/j.actaastro.2010.02.021

    Article  Google Scholar 

  20. Liu Y, Du H, Liu L, Leng J. Shape memory polymers and their composites in aerospace applications: a review. Smart Mater. Struct. 2014;23:023001. https://doi.org/10.1088/0964-1726/23/2/023001.

  21. Lu H, Li Z, Qi X, Xu L, Chi Z, Duan D, Islam M, Wang W, Jin X, Zhu Y, Fu Y, Cui L, Zhuang Y, Dong Y. Flexible, electrothermal-driven controllable carbon fiber/poly(ethylene-co-vinyl acetate) shape memory composites for electromagnetic shielding. Compos. Sci. Technol. 2021;207:108697. https://doi.org/10.1016/j.compscitech.2021.108697.

  22. J. Gao, W. Chen, P. Fan, B. Zhao, J. Hu, D. Zhang, Q. Fang, F. Peng, Experimental determination of mechanical properties of a single-ply broken twill 1/3 weave reinforced shape memory polymer composite. Polym. Test 69, 100–106 (2018). https://doi.org/10.1016/j.polymertesting.2018.05.002

    Article  CAS  Google Scholar 

  23. P. Qu, Y. Wan, C. Bao, Q. Sun, G. Fang, J. Takahashi, A new numerical method for the mechanical analysis of chopped carbon fiber tape-reinforced thermoplastics. Compos. Struct. 201, 857–866 (2018). https://doi.org/10.1016/j.compstruct.2018.06.110

    Article  Google Scholar 

  24. G. Fang, P. Qu, Z. Cao, F. Shi, Mechanical analysis of woven composites through experimental investigation and multiscale numerical simulation. Fibers Polym. 23, 1440–1453 (2022). https://doi.org/10.1007/s12221-022-4061-z

    Article  Google Scholar 

  25. Qu P, Wan Y, Fang G, Guo A, Liu G, Takahashi J. A novel heterogeneous-particle model based on peridynamics for flexural mechanical properties of randomly oriented fiber reinforced composites. Compos. Part B Eng. 2022;243:110140. https://doi.org/10.1016/j.compositesb.2022.110140.

  26. Wang B, Fang G, Wang H, Liang J, Dai F, Meng S. Uncertainty modelling and multiscale simulation of woven composite twisted structure. Compos. Sci. Technol. 2022;217:109118. https://doi.org/10.1016/j.compscitech.2021.109118.

  27. Ying Z, Pan X, Wu Z, Pan Z, Cheng X. Effect of the micro-structure on the compressive failure behavior of three-dimensional orthogonal woven composites. Compos Struct 2022;297:115892. https://doi.org/10.1016/j.compstruct.2022.115892.

  28. Kim D-H, Kim S-W, Lee I. Evaluation of curing process-induced deformation in plain woven composite structures based on cure kinetics considering various fabric parameters. Compos Struct 2022;287:115379. https://doi.org/10.1016/j.compstruct.2022.115379.

  29. Zhou G, Sun Q, Meng Z, Li D, Peng Y, Zeng D, Su X. Experimental investigation on the effects of fabric architectures on mechanical and damage behaviors of carbon/epoxy woven composites. Compos. Struct. 2021;257:113366. https://doi.org/10.1016/j.compstruct.2020.113366.

  30. Zhou G, Sun Q, Li D, Meng Z, Peng Y, Zeng D, Su X. Effects of fabric architectures on mechanical and damage behaviors in carbon/epoxy woven composites under multiaxial stress states. Polym. Test 2020;90:106657. https://doi.org/10.1016/j.polymertesting.2020.106657.

  31. Wang Y, Zhou Y, Jin C. An analytical nonlinear model for plain-woven composites under off-axis loads. Compos. Struct. 2022;296:115905. https://doi.org/10.1016/j.compstruct.2022.115905.

  32. Xiao Y, Zhang X, Ghosh S. Parametrically-upscaled continuum damage mechanics (PUCDM) model for plain weave woven composites: part I model development. Compos. Struct. 2022;296:115825. https://doi.org/10.1016/j.compstruct.2022.115825.

  33. Nasri M, Abbassi F, Garnier C, Labanieh AR, Dalverny O, Zghal A. Analysis of woven fabrics forming through a comparison between discrete elastic and hypoelastic approaches based on mesoscale structure. Compos. Struct. 2022;284:115149. https://doi.org/10.1016/j.compstruct.2021.115149.

  34. J. Leng, X. Lan, Y. Liu, S. Du, Shape-memory polymers and their composites: Stimulus methods and applications. Prog. Mater. Sci. 56, 1077–1135 (2011). https://doi.org/10.1016/j.pmatsci.2011.03.001

    Article  CAS  Google Scholar 

  35. Zhao Y, Song J, Wen W, Cui H, Li C, Liu S. Thermo-mechanical behaviors of 2.5D shallow straight-link-shaped woven composites under the warp direction fatigue loading at room and elevated temperatures. Compos. Struct. 2022;289:115489. https://doi.org/10.1016/j.compstruct.2022.115489.

  36. Z. Zhao, X. Chen, X. Wang, Deformation behavior of woven glass/epoxy composite substrate under thermo-mechanical loading. Mater. Des. 82, 130–135 (2015). https://doi.org/10.1016/j.matdes.2015.05.048

    Article  CAS  Google Scholar 

  37. Z. Murčinková, P. Postawa, J. Winczek, Parameters influence on the dynamic properties of polymer-matrix composites reinforced by fibres, particles, and hybrids. Polymers 14, 3060 (2022). https://doi.org/10.3390/polym14153060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. M.N.M. Azlin, S.M. Sapuan, M.Y.M. Zuhri, E.S. Zainudin, R.A. Ilyas, Thermal stability, dynamic mechanical analysis and flammability properties of woven kenaf/polyester-reinforced polylactic acid hybrid laminated composites. Polymers 14, 2690 (2022). https://doi.org/10.3390/polym14132690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nandi P, Das D. Mechanical, thermo-mechanical and biodegradation behaviors of green-composites prepared from woven structural nettle (Girardinia diversifolia) reinforcement and poly(lactic acid) fibers. Ind. Crops. Prod. 2022;175:114247. https://doi.org/10.1016/j.indcrop.2021.114247.

  40. Ke J, Gao J, Wu Z, Xiang Z, Hu X. Vari-stiffness characteristics of a 3D SMA hybrid basalt woven composite. Compos. Struct. 2022;285:115192. https://doi.org/10.1016/j.compstruct.2022.115192.

  41. Han M-W, Kim M-S, Ahn S-H. Shape memory textile composites with multi-mode actuations for soft morphing skins. Compos. Part B Eng. 2020;198:108170. https://doi.org/10.1016/j.compositesb.2020.108170.

  42. Zubair Z, L’Hostis G, Goda I. Electrical activation and shape recovery control of 3D multilayer woven shape memory polymer composite incorporating carbon fibers. Mater. Lett. 2021;291:129511. https://doi.org/10.1016/j.matlet.2021.129511.

  43. Sevenois RDB, Van Paepegem W. Fatigue damage modeling techniques for textile composites: review and comparison with unidirectional composite modeling techniques. Appl. Mech. Rev. 2015;67. https://doi.org/10.1115/1.4029691.

  44. J. Hu, W. Chen, P. Fan, J. Gao, G. Fang, Z. Cao, F. Peng, Epoxy shape memory polymer (SMP): material preparation, uniaxial tensile tests and dynamic mechanical analysis. Polym. Test 62, 335–341 (2017). https://doi.org/10.1016/j.polymertesting.2017.07.001

    Article  CAS  Google Scholar 

  45. W. Chen, G. Fang, Y. Hu, An experimental and numerical study of flattening and wrapping process of deployable composite thin-walled lenticular tubes. Thin-Walled Struct. 111, 38–47 (2017). https://doi.org/10.1016/j.tws.2016.11.009

    Article  CAS  Google Scholar 

  46. P. Fan, W. Chen, B. Zhao, J. Hu, J. Gao, G. Fang, F. Peng, Formulation and numerical implementation of tensile shape memory process of shape memory polymers. Polymer 148, 370–381 (2018). https://doi.org/10.1016/j.polymer.2018.06.054

    Article  CAS  Google Scholar 

  47. Y. Hu, W. Chen, J. Gao, J. Hu, G. Fang, F. Peng, A study of flattening process of deployable composite thin-walled lenticular tubes under compression and tension. Compos. Struct. 168, 164–177 (2017). https://doi.org/10.1016/j.compstruct.2017.02.029

    Article  Google Scholar 

  48. D4255/D4255M-15a A. Standard test method for in-plane shear properties of polymer matrix composite materials by the rail shear method 2015.

  49. P. Qu, X. Guan, Y. Jia, S. Lou, J. Nie, Effective elastic properties and stress distribution of 2D biaxial nonorthogonally braided composites. J. Compos Mater. 46, 997–1008 (2012). https://doi.org/10.1177/0021998311413684

    Article  Google Scholar 

  50. Z. Xia, Y. Zhang, F. Ellyin, A unified periodical boundary conditions for representative volume elements of composites and applications. Int. J. Solids Struct. 40, 1907–1921 (2003). https://doi.org/10.1016/S0020-7683(03)00024-6

    Article  Google Scholar 

  51. Qu P, Sun X, Ping L, Zhang D, Jia Y. A new numerical model for the analysis on low-velocity impact damage evolution of carbon fiber reinforced resin composites. J. Appl. Polym. Sci. 2017;134. https://doi.org/10.1002/app.44374.

  52. P. Qu, X. Sun, X. Guan, Y. Mu, Y. Jia, Effect of interlaminar toughness on the low-velocity impact damage in composite laminates. Polym. Compos. 37, 1085–1092 (2016). https://doi.org/10.1002/pc.23270

    Article  CAS  Google Scholar 

  53. M. Elices, G.V. Guinea, J. Gómez, J. Planas, The cohesive zone model: advantages, limitations and challenges. Eng. Fract Mech. 69, 137–163 (2002). https://doi.org/10.1016/S0013-7944(01)00083-2

    Article  Google Scholar 

  54. M. Fiolka, A. Matzenmiller, On the resolution of transverse stresses in solid-shells with a multi-layer formulation. Commun. Numer. Methods Eng. 23, 313–326 (2007). https://doi.org/10.1002/cnm.908

    Article  Google Scholar 

  55. C. Medina, C. Canales, C. Arango, P. Flores, The influence of carbon fabric weave on the in-plane shear mechanical performance of epoxy fiber-reinforced laminates. J. Compos. Mater. 48, 2871–2878 (2014). https://doi.org/10.1177/0021998313503026

    Article  Google Scholar 

  56. M. Alizadeh, F. Lohrasby, R. Khajavi, N. Kordani, H.R. Baharvandi, M. Rezanejad, Studying the mechanical properties of composites made of Kenaf-Nylon 66 fabric, silica nanoparticles, and epoxy resin. Polym. Compos. 37, 674–683 (2016). https://doi.org/10.1002/pc.23224

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the National Natural Science Foundation of China (51573094), the Doctor Scientific Research Fund of Liaocheng University (3180500), Innovation and Entrepreneurship Training Plan for College Students of Liaocheng University (CXCY2021163, CXCY2021110) and the Postdoctoral Science Foundation of China (2020M682117) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangqiang Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, P., Fang, G., Kong, H. et al. Effect of Thread Count on the Shear Mechanical Properties and Dynamic Mechanical Properties of Shape Memory Polymer Reinforced by Single-Ply Weave Fabric. Fibers Polym 24, 3299–3317 (2023). https://doi.org/10.1007/s12221-023-00269-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00269-7

Keywords

Navigation