Skip to main content
Log in

Low-Velocity Impact Response of Hybrid CNTs Reinforced Conical Shell Under Hygrothermal Conditions

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In the present analysis, low-velocity impact investigation of a hybrid CNT-fibernano composite twisted conical shell is carried out under varying moisture and thermal environment using finite element methodology. The impact is caused by a spherical impactor at the centre of the panel. The twisted conical shell made of CNT-fibernano composite with cantilever boundary condition can be idealized as turbo machinery blade. The first order shear deformation theory (FSDT) is used to compute the strains and an eight noded isoparametric shell element, which comprises of 5 degree of freedom per node, is used to discretize the panel. The modified Hertzian contact law is used to measure the contact force due the impact between the impactor and the panel. Using Lagrange’s equation of motion, dynamic equation is formulated, considering cantilever boundary condition. The solution of the dynamic equation is obtained by Newmark’s time integration algorithm. The finite element programme is developed and validated with the existing literature to analyse the effect of weight fraction of CNTs, twist angle of the conical shell and the effect of velocity of impact on the contact force, impactor displacement, initial velocity of impactor and indentation. Numerical results reveal that by increasing the weight fraction of CNT, increases the stiffness of the panel thereby the contact forces. However, by increasing the temperature and moisture, the contact force decreases as a result of decrease in stiffness of the structure. The twist angle has striking effects in the contact force histories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Udupa, K.V. Gangadharan, In: IEEE-International Conference on advances in engineering, science and management (ICAESM-2012) pp 399–404

  2. D. Vollath, Nanocomposites Nanomaterials: An Introduction for Beginners (Wiley, Germany, 2013)

    Google Scholar 

  3. C.T. Sun, J.K. Chen, J. Compos. Mater. 19, 490 (1985)

    Article  Google Scholar 

  4. H.Y. Wu, C. Fu-Kuo, Comput. Struct. 31, 453–466 (1989)

    Article  Google Scholar 

  5. V.K. Yalamanchili, B.V. Sankar, Compos. Sci. Technol. 72, 1989 (2012)

    Article  Google Scholar 

  6. S. Abrate, Impact on Composite Structures (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  7. L.U. Chun, K.Y. Lam, Int. J. Solids Struct. 35(11), 963 (1998)

    Article  Google Scholar 

  8. A. Karmakar, K. Kishimoto, Int Key Eng. Mater. 297, 1285 (2005)

    Article  Google Scholar 

  9. A. Karmakar, K. Kishimoto, Shock. Vib. 13, 619 (2006)

    Article  Google Scholar 

  10. S.W. Gong, K.A. Lam, J.N. Reddy, Int. J. Impact Eng 22, 397 (1999)

    Article  Google Scholar 

  11. M. Rout , S. S. Hota, A. Karmakar, In: American Society of Mechanical Engineers, In Gas Turbine India Conference, Vol. 58516, p. V002T05A026 (2017).

  12. A. Das , R. Banerjee, A. Karmakar, In: Gas Turbine India Conference, American Society of Mechanical Engineers, Vol. 58516, p. V002T10A002 (2017).

  13. M. Rout, S.S. Hota, A. Karmakar, Int. J. Comput. Methods Eng. Sci. Mech. 19, 139 (2018)

    Article  Google Scholar 

  14. K.M. Liew, Z.X. Lei, L.W. Zhang, Compos. Struct. 120, 90 (2015)

    Article  Google Scholar 

  15. K.M. Liew, Z. Pan, L.W. Zhang, Sci. China Phys. Mech. Astron. 63, 1 (2020)

    Article  Google Scholar 

  16. J.E. Jam, Y. Kiani, Compos. Struct. 132, 35 (2015)

    Article  Google Scholar 

  17. P. Malekzadeh, M. Dehbozorgi, Compos. Struct. 140, 728 (2016)

    Article  Google Scholar 

  18. M. Fallah, A. Daneshmehr, H. Zarei, H. Bisadi, G. Minak, Compos. Struct. 187, 554 (2018)

    Article  Google Scholar 

  19. M. Rout, C. Dash, A. Karmakar, Int. J. Adv. Mech. Eng 8, 8 (2018)

    Google Scholar 

  20. A. Azizi, S.M.R. Khalili, K. MalekzadehFard, J. Sandwich Struct. Mater. 21, 1481 (2019)

    Article  CAS  Google Scholar 

  21. M.R. Bayat, O. Rahmani, M. MosaviMashhadi, Polym. Compos. 39, 730 (2018)

    Article  CAS  Google Scholar 

  22. Z.X. Wang, J. Xu, P. Qiao, Compos. Struct. 108, 423 (2014)

    Article  Google Scholar 

  23. F. Ebrahimi, S. Habibi, Mech. Adv. Mater. Struct. 25, 425 (2018)

    Article  CAS  Google Scholar 

  24. M. Rafiee, X.F. Liu, X.Q. He, S. Kitipornchai, J. Sound Vib. 333, 3236 (2014)

    Article  Google Scholar 

  25. S.Y. Lee, Compos. Struct. 200, 757 (2018)

    Article  Google Scholar 

  26. H. Zarei, M. Fallah, H. Bisadi, A. Daneshmehr, G. Minak, Compos. B Eng. 113, 206 (2017)

    Article  CAS  Google Scholar 

  27. M.F. Oskouie, M.K. Hassanzadeh-Aghdam, R. Ansari, Eng. Comput. 37(1), 713 (2021)

    Article  Google Scholar 

  28. A. El Moumen, M. Tarfaoui, O. Hassoon, K. Lafdi, H. Benyahia, M. Nachtane, Appl. Compos. Mater. 25(2), 309 (2018)

    Article  Google Scholar 

  29. M. Kim, Y.B. Park, O.I. Okoli, C. Zhang, Compos. Sci. Technol. 69(3–4), 335 (2009)

    Article  CAS  Google Scholar 

  30. E. Bekyarova, E.T. Thostenson, A. Yu, H. Kim, J. Gao, J. Tang, R.C. Haddon, Langmuir 23(7), 3970 (2007)

    Article  CAS  PubMed  Google Scholar 

  31. A. Godara, L. Mezzo, F. Luizi, A. Warrier, S.V. Lomov, A.W. Van Vuure, I. Verpoest, Carbon 47(12), 2914 (2009)

    Article  CAS  Google Scholar 

  32. K.J. Green, D.R. Dean, U.K. Vaidya, E. Nyairo, Compos. Part A Appl. Sci. Manuf. 40(9), 1470 (2009)

    Article  Google Scholar 

  33. F. Tornabene, M. Bacciocchi, N. Fantuzzi, J.N. Reddy, Polym. Compos. 40(S1), E102–E126 (2019)

    Article  CAS  Google Scholar 

  34. D. Vollath, Environ. Eng. Manag. J. 7(6), 865 (2008)

    Google Scholar 

  35. K.S. Ram, P.K. Sinha, J. Sound Vib. 158(1), 133 (1992)

    Article  Google Scholar 

  36. T. Bandyopadhyay, A. Karmakar, K. Kishimoto, Mech. Eng. J. 1, 6 (2014)

    Google Scholar 

  37. S.S. Patnaik, T. Roy, J. Vib. Control 27(21–22), 2494–2512 (2021)

    Article  Google Scholar 

  38. S.S. Patnaik, T. Roy, Eng. Comput. 38(4), 3773–3792 (2022)

    Article  Google Scholar 

  39. R.D. Cook, Concepts and Applications of Finite Element Analysis (Wiley, New York, 2007)

    Google Scholar 

  40. K.J. Bathe, Finite Element Procedures (PHI, New Delhi, 1990)

    Google Scholar 

Download references

Funding

No funding from any source are used in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranojit Banerjee.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics approval

The present manuscript is the author’s own original work. The present manuscript is a new work and has not been previously published anywhere. The present manuscript is not sent anywhere for publication. The present manuscript reflects the authors' own research and investigations were done in a genuine procedure.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, R., Rout, M., Karmakar, A. et al. Low-Velocity Impact Response of Hybrid CNTs Reinforced Conical Shell Under Hygrothermal Conditions. Fibers Polym 24, 2849–2866 (2023). https://doi.org/10.1007/s12221-023-00262-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00262-0

Keywords

Navigation