Skip to main content
Log in

Research on the Defect Detection Algorithm of Warp-Knitted Fabrics Based on Improved YOLOv5

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

To resolve the problems of low detection accuracy, slow detection speed, and high missed detection rate of traditional warp-knitted fabrics, this study researches and proposes an improved YOLOv5 algorithm for automatic detection of warp-knitted fabric defects, utilizing YOLOv5’s fast detection speed and high accuracy. First, a multi-head self-attention mechanism module with an improved activation function is proposed to enhance the model’s attention to the defect area of the fabric, improve the detection accuracy of warp-knitted fabric defects and reduce the missed detection rate. Second, a hybrid atrous space pyramid module is added to the backbone extraction network to enhance the receptive field, capture global feature details, and improve the model’s recognition and location accuracy of warp-knitted fabric defects. Finally, the transposed convolution is used as an upsampling layer to improve the feature fusion network. The feature extraction layer can better combine fine-grained details with highly abstract information, enhance the accuracy of feature fusion, and then improve the detection accuracy of the model. Experimental results show that using the self-built warp-knitted fabric dataset, the mean average precision of the improved YOLOv5 is 91.3%, the precision rate is 89.7%, and the recall rate is 79.9%, which is 7.9%, 15.6% and 4.1% higher than the original YOLOv5 algorithm, respectively. The improved YOLOv5 defect detection algorithm has a higher accuracy, faster speed, and better robustness, which is helpful for the development and application of a warp-knitted fabric automatic inspection system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Z. Pourkaramdel, S. Fekri-Ershad, L. Nanni, Expert Syst. Appl. 198, 116827 (2022)

    Article  Google Scholar 

  2. S. Chakraborty, M. Moore, L. Parrillo-Chapman, “Automatic Printed Fabric Defect Detection Based on Image Classification Using Modified VGG Network.”, USA. Cham: Springer International Publishing, 384–393, (2021)

  3. I. Koulali, M.T. Eskil, Appl. Soft Comput. 113, 107913 (2021)

    Article  Google Scholar 

  4. C. Li, J. Li, Y.F. Li, L.M. He, X.K. Fu, J.J. Chen, Secur. Commun. Netw. 2021, 1 (2021)

    Google Scholar 

  5. T. Almeida, F. Moutinho, J.P. Matos-Carvalho, IEEE Access 9, 81936 (2021)

    Article  Google Scholar 

  6. K. Hanbay, M.F. Talu, Ö.F. Özgüven, Optik 127, 11960 (2016)

    Article  Google Scholar 

  7. B. Zhang, C. Tang, Autex Res. J. 19, 257 (2019)

    Article  Google Scholar 

  8. D.A. Gustian, N.L. Rohmah, G.F. Shidik, A.Z. Fanani, R.A. Pramunendar and Pujiono, “2019 International Seminar on Application for Technology of Information and Communication (iSemantic)”, Semarang, Indonesia, 7–11 (2019)

  9. C.L. Li, G.S. Gao, Z.F. Liu, D. Huang, J.T. Xi, IEEE Access 7, 83962 (2019)

    Article  Google Scholar 

  10. X.Z. Chang, W. Liu, C. Zhu, X.H. Zou, G. Gui, J. Circuits, Syst. Comput. 31, 2250058 (2022)

    Google Scholar 

  11. J. Vaddin, S. Subbaraman, 2014 European modelling symposium (Pisa, Italy, 2014), pp.21–23

    Google Scholar 

  12. G.H. Hu, J.F. Huang, Q.H. Wang, J.R. Li, Z.J. Xu, X.B. Huang, Text. Res. J. 90, 247 (2020)

    Article  CAS  Google Scholar 

  13. K. Hanbay, M. Talu, O. Ozguven, J. Fac. Eng. Archit. Gaz. 32, 151 (2017)

    Google Scholar 

  14. G.M. Jiang, D. Zhang, H.L. Cong, A.J. Zhang, Z. Gao, Fibres Text. East. Eur. 2, 53 (2014)

    Google Scholar 

  15. N.T. Deotale, T.K. Sarode, 3DResearch 10, 1 (2019)

    Google Scholar 

  16. Z.J. Dong, D. Xia, P.B. Ma, G.M. Jiang, Fibres Text. East. Eur. 25, 87 (2017)

    Article  Google Scholar 

  17. K. Hanbay, M.F. Talu, Ö.F. Özgüven, D. Ozturk, Text. Appar. 29, 1 (2019)

    Google Scholar 

  18. D. Wijesingha and B. Jayasekara “2018 Moratuwa engineering research conference (MERCon)”, Moratuwa, Sri Lanka, 601–606, (2018)

  19. M. Li, S.H. Wan, Z.M. Deng, Y.J. Wang, Comput. Intell. 35, 517 (2019)

    Article  Google Scholar 

  20. Q.H. Zhou, J. Mei, Q. Zhang, S.Z. Wang, G. Chen, Text. Res. J. 91, 962 (2021)

    Article  CAS  Google Scholar 

  21. M.M. Khodier, S.M. Ahmed, M.S. Sayed, IEEE Access 10, 10653 (2022)

    Article  Google Scholar 

  22. A. Rasheed, B. Zafar, A. Rasheed, N. Ali, M. Sajid, U. Habib, Math. Probl. Eng. 2020, 1 (2020)

    Article  Google Scholar 

  23. A.A. Tulbure, A.A. Tulbure, E.H. Dulf, J. Adv. Res. 35, 33 (2022)

    Article  PubMed  Google Scholar 

  24. J.F. Jing, Z. Wang, M. Rätsch, H.H. Zhang, Text. Res. J. 92, 30 (2022)

    Article  CAS  Google Scholar 

  25. K.K. Sudha, P. Sujatha,“2021 4th International Conference on Computing and Communications Technologies (ICCCT)”, Chennai, India, 194–199, (2021)

  26. J.F. Jing, D. Zhuo, H.H. Zhang, Y. Liang, M. Zheng, J. Eng. Fibers Fabr. 15, 1 (2020)

    Google Scholar 

  27. H.S. Xie, Z.S. Wu, Sensors 20, 4260 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  28. J. Wu, J. Le, Z.T. Xiao, F. Zhang, L. Geng, Y.B. Liu, W. Wang, Appl. Intell. 51, 4945 (2021)

    Article  Google Scholar 

  29. C.Y. Wang, H.Y.M. Liao, Y.H. Wu, P.Y. Chen, J.W. Hsien, I.H. Yeh, “2020 IEEE/CVF Conference on computer vision and pattern recognition workshops (CVPRW)”, Seattle, WA, USA, 390–391, (2020)

  30. S. Liu, L. Qi, H.F. Qin, J.P. Shi, J.Y. Jia, “Proceedings of the IEEE conference on computer vision and pattern recognition”, Salt Lake City, UT, 8759–8768, (2018)

  31. T.Y. Lin, P. Dollar, R. Girshick, K.M. He, B. Hariharan, S. Belongie, “Proceedings of the IEEE conference on computer vision and pattern recognition”, Honolulu, HI, (2117–2125), 2017

  32. A. Durmuşoğlu and Y. Kahraman, “2021 Innovations in intelligent systems and applications conference (ASYU)”, Elazig, Turkey, 1–5, (2021)

  33. V. Srivastava, B. Biswas, Neural Process. Lett. 54, 1753 (2022)

    Article  Google Scholar 

  34. N Kousik, Y Natarajan, RA Raja, S kallam, R Patan, AH Gandomi, Expert Syst. Appl., 166, 114064, (2021)

  35. N.A. Mohamed, M.A. Zulkifley, S.R. Abdani,“2020 IEEE student conference on research and development (SCOReD)”, Batu Pahat, Malaysia, 333–336, (2020)

  36. G.M. Lin, Q.X. Wu, L.D. Qiu, X.X. Huang, Neurocomputing 275, 1219 (2018)

    Article  Google Scholar 

  37. M. Rashid, M.A. Khan, M. Sharif, M. Raza, M.M. Sarfraz, F. Afza, Multimed. Tools Appl. 78, 15751 (2019)

    Article  Google Scholar 

  38. Z.F. Liu, S.L. Liu, C.L. Li, B.C. Li, Int. J. Cloth. Sci. Technol. 34, 156 (2021)

    Article  Google Scholar 

  39. S.S.A. Zaidi, M.S. Ansari, A. Aslam, N. Kanwal, M. Asghar, B. Lee, Digit. Signal Process. 126, 103514 (2022)

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Key R & amp; D Program of China, 2017YFB1304000, Qihong Zhou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihong Zhou.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Sun, H., Chen, P. et al. Research on the Defect Detection Algorithm of Warp-Knitted Fabrics Based on Improved YOLOv5. Fibers Polym 24, 2903–2919 (2023). https://doi.org/10.1007/s12221-023-00253-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00253-1

Keywords

Navigation