Skip to main content
Log in

Stability Improvement of Betalains Recovered from Red Dragon Fruit Peels (Hylocereus polyrhizus) by Cellulose-Based Encapsulation

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This study promoted a valorization pathway of Red Dragon Fruit Peel, including extraction of betalains and pectin, stabilization of batalains and expanding the application of betalains and pectin in jam and jellies. Betalains were extracted by the same weight of ethanol 96% at 45 ºC for 1 h and obtained with the content of 2.09 ± 0.03 mg/g of dry peels. To minimize the solid wastes, the alcohol-insoluble residues of betalains extraction were utilized to extract pectin by citric acid 0.1 M at 85 °C for 120 min with 19.8% yield and 56.8% DE (degree of esterification). Betalains stabilization focused on the encapsulation in support of the freeze-drying technique and microcrystalline cellulose (MCC) as a wall material. Freeze-dried MCC/betalains complexes were prepared by different weight ratios of betalains and MCC (1:3, 1:5, and 1:10). Encapsulation of betalains promoted significantly higher stability at different storage conditions: cold (4 °C) and room temperature (27 °C) with daylight and without daylight. The stability of encapsulated betalains was improved at high temperatures (80 °C and 100 °C), various pH levels (1.2, 3.6, 5.6, and 7.4) and water activities (0.089 and 0.898) when compared with the nonencapsulated betalains. The incorporation of encapsulated betalains into pineapple jam and gummy candy demonstrated storage stability after a two-week storage period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The generated data used to support the findings of this study are included within the article.

References

  1. N.L. Le, Int. J. Food Sci. Technol. 57, 2571 (2022). https://doi.org/10.1111/ijfs.15111

    Article  CAS  Google Scholar 

  2. S. Kobylewski, M.F. Jacobson, Int. J. Occup. Med. Environ. Health. 18(3), 220 (2012). https://doi.org/10.1179/1077352512Z.00000000034

    Article  CAS  Google Scholar 

  3. J.P. Carreón-Hidalgo, D.C. Franco-Vásquez, D.R. Gómez-Linton, L.J. Pérez-Flores, Food Res. Int. (2022). https://doi.org/10.1016/j.foodres.2021.110821

    Article  PubMed  Google Scholar 

  4. D.D. Castro-Enríquez, B. Montaño-Leyva, C.L. Del Toro-Sánchez, J.E. Juaréz-Onofre, E. Carvajal-Millan, S.E. Burruel-Ibarra, J.A. Tapia-Hernández, C.G. Barreras-Urbina, F. Rodríguez-Félix, J. Food Sci. Technol. 57, 1587 (2020). https://doi.org/10.1007/s13197-019-04120-x

    Article  PubMed  Google Scholar 

  5. J.S. Ribeiro, C.M. Veloso, Food Hydrocoll. (2021). https://doi.org/10.1016/j.foodhyd.2020.106374

    Article  Google Scholar 

  6. J. Nsor-Atindana, M. Chen, H.D. Goff, F. Zhong, H.R. Sharif, Y. Li, Carbohydr. Polym. 172, 159 (2017). https://doi.org/10.1016/j.carbpol.2017.04.021

    Article  CAS  PubMed  Google Scholar 

  7. J.M.S. de Barros, T. Lechner, D. Charalampopoulos, V.V. Khutoryanskiy, A.D. Edwards, Int. J. Pharm. 493(1–2), 483 (2015). https://doi.org/10.1016/j.ijpharm.2015.06.051

    Article  CAS  PubMed  Google Scholar 

  8. J. Shokri, K. Adibkia, “Application of Cellulose and Cellulose Derivatives in Pharmaceutical Industries” in Cellulose - Medical, Pharmaceutical and Electronic Applications, ed. by T. de Ven, L. Godbout (IntechOpen, London, 2013) https://doi.org/10.5772/55178

  9. T. Koupantsis, E. Pavlidou, A. Paraskevopoulou, Food Hydrocoll. 37, 134 (2014). https://doi.org/10.1016/j.foodhyd.2013.10.031

    Article  CAS  Google Scholar 

  10. K. Ravichandran, R. Palaniraj, N.M.M.T. Saw, A.M.M. Gabr, A.R. Ahmed, D. Knorr, I. Smetanska, J. Food Sci. Technol. 51, 2216 (2014). https://doi.org/10.1007/s13197-012-0728-6

    Article  CAS  PubMed  Google Scholar 

  11. J. Vukoja, A. Pichler, I. Ivić, J. Šimunović, M. Kopjar, Molecules 25, 2624 (2020). https://doi.org/10.3390/molecules25112624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. J. Vukoja, I. Buljeta, A. Pichler, J. Šimunović, M. Kopjar, Processes 9, 90 (2021). https://doi.org/10.3390/pr9010090

    Article  CAS  Google Scholar 

  13. J.W. Siccama, E. Pegiou, N.M. Eijkelboom, L. Zhang, R. Mumm, R.D. Hall, M.A.I. Schutyser, Food Chem (2021). https://doi.org/10.1016/j.foodchem.2021.129567

    Article  PubMed  Google Scholar 

  14. Z. Feng, Mi. Li, Y. Wang, M. Zhu, LWT 96, 152 (2018). https://doi.org/10.1016/j.lwt.2018.04.084

  15. T.M. Le, U.P.N. Tran, Y.H.P. Duong, Q.D. Nguyen, V.T. Tran, P.T. Mai, P.K. Le, Clean Technol. Environ Policy 24, 199 (2022). https://doi.org/10.1007/s10098-021-02116-w

    Article  Google Scholar 

  16. U.P.N. Tran, T. Dang-Bao, P.T.K. Le, U.D.H. Huynh, T.T.H. Nguyen, T.M. Le, Chem. Eng. Trans. 97, 31 (2022). https://doi.org/10.3303/CET2297006

  17. S.J. Calva-Estrada, M. Jiménez-Fernández, E. Lugo-Cervantes, Food Chem. Mol. Sci. (2022). https://doi.org/10.1016/j.fochms.2022.100089

    Article  Google Scholar 

  18. F.C. Stintzing, A. Schieber, R. Carle, Eur. Food Res. Technol. (2003). https://doi.org/10.1007/s00217-002-0657-0

    Article  Google Scholar 

  19. FCC, Food chemical codex, 3rd edn. (National Academy of Sciences, Washington, DC, 1981)

    Google Scholar 

  20. X. Li, Z.-H. Zhang, J. Qiao, W. Qu, M.-S. Wang, X. Gao, C. Zhang, C.S. Brennan, X. Qi, Ultrason. Sonochem. (2022). https://doi.org/10.1016/j.ultsonch.2021.105897

    Article  PubMed  PubMed Central  Google Scholar 

  21. E.B. Rodriguez, M.L.P. Vidallon, D.J.R. Mendoza, C.T. Reyes, J. Sci. Food Agric. 96, 4679 (2016). https://doi.org/10.1002/jsfa.7681

    Article  Google Scholar 

  22. ISO 14502–1:2005, “Determination of substances characteristic of green and black tea — Part 1: Content of total polyphenols in tea — Colorimetric method using Folin-Ciocalteu reagent.”

  23. E.B. Rodriguez, M.L.P. Vidallon, D.J.R. Mendoza, K.A.M. Dalisay, C.T. Reyes, Philipp Agric. Sci. 98(4), 382 (2015)

    Google Scholar 

  24. ISO 4833–1:2013, “Microbiology of the food chain — Horizontal method for the enumeration of microorganisms — Part 1: Colony count at 30 °C by the pour plate technique.”

  25. ISO 16649–2:2001, “Microbiology of food and animal feeding stuffs — Horizontal method for the enumeration of beta-glucuronidase-positive Escherichia coli — Part 2: Colony-count technique at 44 degrees C using 5-bromo-4-chloro-3-indolyl beta-D-glucuronide.”

  26. ISO 6888–1:1999 and 1:2003, “Microbiology of food and animal feeding stuffs — Horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species) — Part 1: Technique using Baird-Parker agar medium AMENDMENT 1: Inclusion of precision data.”

  27. ISO 6579–1:2017, “Microbiology of the food chain - Horizontal method for the detection, enumeration and serotyping of Salmonella - Part 1: Detection of Salmonella spp.”

  28. AOAC 2014.05–2014, “Enumeration of Yeast and Mold in Food.”

  29. L.C. Wu, H.W. Hsu, Y.C. Chen, C. Chiu, Y. Lin, J.A. Ho, Food Chem. 95, 319 (2006). https://doi.org/10.1016/j.foodchem.2005.01.002

    Article  CAS  Google Scholar 

  30. N.S. Ramli, P. Ismail, A. Rahmat, Sci. World J. (2014). https://doi.org/10.1155/2014/964731

    Article  Google Scholar 

  31. K. Muhammad, N.I. Mohd. Zahari, S.P. Gannasin, N. Mohd. Adzahan, J. Bakar, Food Hydrocoll. 42, 289 (2014). https://doi.org/10.1016/j.foodhyd.2014.03.021

  32. N. Tongkham, B. Juntasalay, P. Lasunon, N. Sengkhamparn, Agric. Nat. Resour. 51, 262 (2017). https://doi.org/10.1016/j.anres.2017.04.004

    Article  Google Scholar 

  33. J. Romero-Gonzalez, K.S. Ah-Hen, R. Lemus-Mondaca, O. Munoz-Farina, Food Chem. (2020). https://doi.org/10.1016/j.foodchem.2019.126115

    Article  PubMed  Google Scholar 

  34. F.R. de Mello, C. Bernardo, C.O. Dias, L. Gonzaga, E.R. Amante, R. Fett, L.M.B. Candido, Cienc. Rural 45(2), 323 (2015). https://doi.org/10.1590/0103-8478cr20140548

    Article  Google Scholar 

  35. K.M. Herbach, F.C. Stintzing, R. Carle, J. Food Sci. 71(4), R41 (2006). https://doi.org/10.1111/j.1750-3841.2006.00022.x

    Article  CAS  Google Scholar 

  36. N. Chhikara, K. Kushwaha, P. Sharma, Y. Gat, A. Panghal, Food Chem. 272, 192 (2019). https://doi.org/10.1016/j.foodchem.2018.08.022

    Article  CAS  PubMed  Google Scholar 

  37. I. Sadowska-Bartosz, G. Bartosz, Molecules (Basel, Switzerland), (2021) https://doi.org/10.3390/molecules26092520

  38. S. Yousefi, Z. Emam-Djomeh, M. Mousavi, F. Kobarfard, I. ZbicinskiAdv, Powder. Technol. 26, 462 (2015). https://doi.org/10.1016/j.apt.2014.11.019

    Article  CAS  Google Scholar 

  39. F.C. Stintzing, R. Carle, Trends Food Sci. Technol. 15, 19 (2004). https://doi.org/10.1016/j.tifs.2003.07.004

    Article  CAS  Google Scholar 

  40. E.G. Maxwell, N.J. Belshaw, K.W. Waldron, V.J. Morris, Trends Food Sci. Technol. 24, 64 (2012). https://doi.org/10.1016/j.tifs.2011.11.002

    Article  CAS  Google Scholar 

  41. N.I.M. Zahari, S.K.S. Muhammad, J. Bakar, N.M. Adzahan, J. Trop. Agric. Food Sci. 44, 95 (2016)

    Google Scholar 

  42. L.C. Soedirga, M. Marchellin, Caraka Tani J. Sustain. Agric. 37(1), 1 (2022). https://doi.org/10.2061/carakatani.v37i1.53798

    Article  Google Scholar 

  43. QCVN 8–3:2012/BYT, National technical regulation of Microbiological contaminants in food

  44. L. Cassani, A. Gomez-Zavaglia, Front. Nutr. (2022). https://doi.org/10.3389/fnut.2022.829061

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uyen P. N. Tran.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest requiring disclosure in this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang-Bao, T., Tran, U.P.N. Stability Improvement of Betalains Recovered from Red Dragon Fruit Peels (Hylocereus polyrhizus) by Cellulose-Based Encapsulation. Fibers Polym 24, 2683–2696 (2023). https://doi.org/10.1007/s12221-023-00248-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00248-y

Keywords

Navigation