Skip to main content
Log in

Residual Impact Strength of Intra-ply, Inter-ply and Functionally Gradient Basalt/Poly-ester Hybrid Composites Subjected to Charpy Impact

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this paper, the residual impact strength of inter-ply, intra-ply, and functionally gradient composite subjected to Charpy pre-impact with various energy levels was experimentally investigated. Basalt and poly-ester fibers along with epoxy resin were used to produce different hybrid composites. The purpose of using this hybrid composite is to simultaneously use the good mechanical properties of basalt fiber and the excellent impact resistance of poly-ester fiber. In all the composite samples, the relative content of basalt fiber to poly-ester fiber was equal to 50 percent. Comparison the results of impact absorption energy in cases without pre-impact and with pre-impact of 1.5 and 3 J cases indicates that in the case of no pre-impact or low-energy pre-impact, the performance of the inter-ply specimen (Interply2) is significantly higher than the FGM specimens, however, by increasing pre-impact energy, the FGM samples have equal or better impact performance than the inter-ply sample. This result is due to the type and extent of damage caused by the pre-impact energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Abrate, Impact on composite structures (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  2. A. Erkliğ, M. Bulut, J. Polym. Eng. 37(2), 177 (2016)

    Article  Google Scholar 

  3. X.C. Sun, S.R. Hallett, Int. J. Impact. Eng. 109, 178 (2017)

    Article  Google Scholar 

  4. S. Boria, A. Scattina, G. Belingardi, Compos. Struct. 167, 63 (2017)

    Article  Google Scholar 

  5. R. Balan, V. Arumugam, K. Abdul Rauf, A. Adhithya, P. Sidharth, C. Santulli, J. Compos. Mater. 49, 713 (2014)

    Article  Google Scholar 

  6. C. Santiuste, S. Sanchez-Saez, E. Barbero, Compo. Struct. 92(1), 25 (2010)

    Article  Google Scholar 

  7. M. Tehrani-Dehkordi, H. Nosraty, M.M. Shokrieh, G. Minak, D. Ghelli, Mater. Des. 43, 283 (2013)

    Article  CAS  Google Scholar 

  8. N. Zhao, H. Rodel, C. Herzberg, S.L. Gao, S. Krzywinski, Compos. Part A. Appl. Sci. Manuf. 40(5), 635 (2009)

    Article  Google Scholar 

  9. J.K. Kim, Key Eng. Mater.: Trans. Tech. Publ. 141, 149 (1998)

    Google Scholar 

  10. A. Pegoretti, E. Fabbri, C. Migliaresi, F. Pilati, Polym. Int. 53, 1290 (2004)

    Article  CAS  Google Scholar 

  11. C. Zhang, Y. Rao, Z. Li, W. Li, Mater. 11, 2472 (2018)

    Article  CAS  Google Scholar 

  12. H. Ghasemnejad, A.S.M. Furquan, P.J. Mason, Mater. Des. 31, 3653 (2010)

    Article  CAS  Google Scholar 

  13. R. Park, J. Jang, Compos. Sci. Technol. 58, 1621 (1998)

    Article  CAS  Google Scholar 

  14. X. Wang, B. Hu, Y. Feng, F. Liang, J. Mo, J. Xiong, Y. Qiu, Compos. Sci. Technol. 68, 444 (2008)

    Article  CAS  Google Scholar 

  15. M. Akhbari, M.M. Shokrieh, H. Nosraty, Trans CSME 32, 81 (2008)

    Google Scholar 

  16. O. Özbek, O.Y. Bozkurt, A. Erkliğ, Polym. Test. 79, 106082 (2019)

    Article  Google Scholar 

  17. G. Kaya, J. Reinf. Plast. Compos. 38(1), 31 (2019)

    Article  CAS  Google Scholar 

  18. M. Rajesh, J. Pitchaimani, Sādhanā. 42, 1215 (2017)

    Article  CAS  Google Scholar 

  19. C. Zhang, Y. Rao, W. Li, Compos. Struct. 234, 111713 (2019)

    Article  Google Scholar 

  20. M. Koizumi, Funct. Gradient Mater. 34, 3 (1993)

    CAS  Google Scholar 

  21. K.M. Liew, Z.X. Lei, L.W. Zhang, Compos. Struct. 120, 90 (2015)

    Article  Google Scholar 

  22. N.J. Lee, J. Jang, M. Park, C.R. Choe, J. Mater. Sci. 32, 2013 (1997)

    Article  CAS  Google Scholar 

  23. N.J. Lee, J. Jang, Compos. Sci. Technol. 60, 209 (2000)

    Article  CAS  Google Scholar 

  24. H.T. Thai, S.E. Kim, Compos. Struct. 128, 70 (2015)

    Article  Google Scholar 

  25. E. Bafekrpour, C. Yang, M. Natali, B. Fox, Compos. Part A. Appl. Sci. Manuf. 54, 124 (2013)

    Article  CAS  Google Scholar 

  26. J. Jang, C. Lee, Polym. Test. 17(6), 383 (1998)

    Article  CAS  Google Scholar 

  27. J. Jang, C. Lee, J. Mater. Sci. 33, 5445 (1998)

    Article  CAS  Google Scholar 

  28. ASTM D.256–10, 2018

  29. M.R. Karamooz, H. Rahmani, H. Khosravi, Fiber Polym. 21, 2590 (2020)

    Article  CAS  Google Scholar 

  30. M.M. Shokrieh, M. Heidari-Rarani, M.R. Ayatollahi, Mater. Des. 34, 211 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Tehrani.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadayee Fard, E., Tehrani, M., Sharifi, H. et al. Residual Impact Strength of Intra-ply, Inter-ply and Functionally Gradient Basalt/Poly-ester Hybrid Composites Subjected to Charpy Impact. Fibers Polym 24, 2147–2154 (2023). https://doi.org/10.1007/s12221-023-00217-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00217-5

Keywords

Navigation