Skip to main content
Log in

Effect of Heat Treatment on the Damage and Failure Mechanism of 3D Printed Continuous Fiber Composites Using Acoustic Emission

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Delamination between layers of composite greatly reduces their strength and stiffness, and thus, it is necessary to investigate the heat treatment method of 3D printed continuous fiber-reinforced composites to enhance their interlaminar properties. In this paper, 3D printed composites with different fiber volume fractions were treated at high temperature, and the damage behavior and failure mechanism were analyzed by acoustic emission technology. The dominant frequency of a single waveform was obtained by extracting energy features through wavelet packet transform, and the dominant damage mode of each acoustics emission (AE) event was analyzed and accurately classified. Then, support vector machine algorithm is performed to achieve supervised classification of AE signals. The result shows the maximum load of Specimen A-4 (5% fiber) and B-4 (15% fiber) increased by 83.58% and 86.8%, respectively, after being treated at 180 °C. It can be known that the temperature post-treatment makes the composite have a stronger ability to resist deformation. The temperature treatment will improve the mechanical properties of the composites but simultaneously generate more high-frequency AE signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data of the composites are available from the authors.

References

  1. X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, Compos. B: Eng. 110, 442–458 (2017)

    Article  CAS  Google Scholar 

  2. A. Mitchell, U. Lafont, M. Hołyńska, C. Semprimoschnig, Addit. Manuf. 24, 606–626 (2018)

    CAS  Google Scholar 

  3. W. Nugroho, Y. Dong, A. Pramanik, J. Leng, S. Ramakrishna, Compos. B Eng. 223, 109104 (2021)

    Article  CAS  Google Scholar 

  4. M. Tamez, I. Taha, Addit. Manuf. 37, 101748 (2021)

    CAS  Google Scholar 

  5. P. Zhuo, S. Li, I. Ashcroft, A. Jones, Compos. B Eng. 224, 109143 (2021)

    Article  CAS  Google Scholar 

  6. M.A. Abd El-Baky, Fiber. Polym. 18(12), 2417–2432 (2017)

    Article  CAS  Google Scholar 

  7. D. Saber, M.A. Ab Del-Baky, M.A. Attia, Fiber. Polym. 22(9), 2447–2463 (2021)

    Article  CAS  Google Scholar 

  8. A.A. Melaibari, M.A. Attia, M.A. Ab Del-Baky, Fiber. Polym. 22(5), 1416–1433 (2021)

    Article  CAS  Google Scholar 

  9. M. Megahed, M.A. Abd El-Baky, A.M. Alsaeedy et al., Fiber. Polym. 21(4), 840–848 (2020)

    Article  CAS  Google Scholar 

  10. R. Matsuzaki, M. Ueda, M. Namiki, T. Jeong, H. Asahara, K. Horiguchi, T. Nakamura, A. Todoroki, Y. Hirano, Sci. Rep. 6, 23058 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  11. X. Tian, T. Liu, C. Yang, Q. Wang, D. Li, Compos. Part A Appl. Sci. Manuf. 88, 198–205 (2016)

    Article  CAS  Google Scholar 

  12. M. Caminero, J. Chacón, I. García-Moreno, G. Rodríguez, Compos. B Eng. 148, 93–103 (2018)

    Article  CAS  Google Scholar 

  13. G. Melenka, B. Cheung, J. Schofield, M. Dawson, J. Carey, Compos. Struct. 153, 866–875 (2016)

    Article  Google Scholar 

  14. M. Araya-Calvo, I. López-Gómez, N. Chamberlain-Simon, J.L. León-Salazar, T. Guillén-Girón, J. Corrales-Cordero, O. Sánchez-Brenes, Addit. Manuf. 22, 157–164 (2018)

    CAS  Google Scholar 

  15. A. Dickson, J. Barry, K. McDonnell, D. Dowling, Addit. Manuf. 16, 146–152 (2017)

    CAS  Google Scholar 

  16. M. Caminero, I. García-Moreno, G. Rodríguez, J. Chacón, Compos. B Eng. 165, 131–142 (2019)

    Article  CAS  Google Scholar 

  17. J. Liu, L. Wang, Z.Z. Song, W. Zhou, L.H. Ma, J. Appl. Polym. Sci. 139(23), 52296 (2022)

    Article  CAS  Google Scholar 

  18. C. Pascual-González, P. San Martín, I. Lizarralde, A. Fernández, A. León, C. Lopes, J. Fernández-Blázquez, Compos. B Eng. 210, 108652 (2021)

    Article  Google Scholar 

  19. T. Liu, X. Tian, M. Zhang, D. Abliz, D. Li, G. Ziegmann, Compos. Part A Appl. Sci. Manuf. 114, 368–376 (2018)

    Article  CAS  Google Scholar 

  20. K. Wang, H. Long, Y. Chen, M. Baniassadi, Y. Rao, Y. Peng, Compos. Part A Appl. Sci. Manuf. 147, 106460 (2021)

    Article  CAS  Google Scholar 

  21. C. Barile, C. Casavola, G. Pappalettera, V. Kannan, Eng. Fract. Mech. 235, 107083 (2020)

    Article  Google Scholar 

  22. I. Tabrizi, A. Kefal, J. Zanjani, C. Akalin, M. Yildiz, Compos. Struct. 223, 110971 (2019)

    Article  Google Scholar 

  23. M.K. Kassa, L.K. Singh, A.B. Arumugam, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 236(15), 8481–8496 (2022)

    Article  CAS  Google Scholar 

  24. M.K. Kassa, R. Selvaraj, A.B. Arumugam, Fiber. Polym. 23(13), 3552–3568 (2022)

    Article  CAS  Google Scholar 

  25. G. Romhany, T. Czigany, J. Karger-Kocsis, Polym. Rev. 57(3), 397–439 (2017)

    Article  CAS  Google Scholar 

  26. L. Ma, K. Zhang, Z. Pan, W. Zhou, J. Liu, J. Compos. Mater. 56(7), 1019–1037 (2022)

    Article  CAS  Google Scholar 

  27. Z. Pan, W. Zhou, K. Zhang, L. Ma, J. Liu, Polym. Compos. 43(5), 2864–2877 (2022)

    Article  CAS  Google Scholar 

  28. C. Barile, C. Casavola, G. Pappalettera, V. Kannan, Struct. Health Monit. 21(4), 1768–1789 (2022)

    Article  Google Scholar 

  29. D. Xu, P. Liu, Z. Chen, Eng. Fract. Mech. 239, 107290 (2020)

    Article  Google Scholar 

  30. C. Muir, B. Swaminathan, A. Almansour, K. Sevener, C. Smith, M. Presby, J. Kiser, T. Pollock, S. Daly, npj Comput. Mater. 7(1), 95 (2021)

    Article  Google Scholar 

  31. S. Wirtz, N. Beganovic, D. Söffker, Struct. Health Monit. 18(4), 1207–1218 (2018)

    Article  Google Scholar 

  32. R. Qin, W. Zhou, K. Han, Y. Zhang, L. Ma, S.N. Appl, Science 2(9), 1596 (2020)

    Google Scholar 

  33. C. Barile, C. Casavola, G. Pappalettera, P. Vimalathithan, Compos. B Eng. 178, 107469 (2019)

    Article  CAS  Google Scholar 

  34. M. Azadi, H. Sayar, A. Ghasemi-Ghalebahman, S. Jafari, Compos. B Eng. 158, 448–458 (2019)

    Article  CAS  Google Scholar 

  35. H. Tang, Q. Sun, Z. Li, X. Su, W. Yan, Compos. Part A Appl. Sci. Manuf. 146, 106416 (2021)

    Article  CAS  Google Scholar 

  36. W. Zhou, P. Zhang, Y. Zhang, Appl. Sci. 8(11), 2265 (2018)

    Article  CAS  Google Scholar 

  37. S. Lomov, M. Karahan, A. Bogdanovich, I. Verpoest, Text. Res. J. 84(13), 1373–1384 (2014)

    Article  CAS  Google Scholar 

  38. D. Xu, P. Liu, J. Li, Z. Chen, Compos. Struct. 211, 351–363 (2019)

    Article  Google Scholar 

  39. D. Mouzakis, D. Dimogianopoulos, Eng. Fract. Mech. 210, 422–428 (2019)

    Article  Google Scholar 

  40. M. Saeedifar, M. Najafabadi, D. Zarouchas, H. Toudeshky, M. Jalalvand, Compos. B Eng. 152, 180–192 (2018)

    Article  CAS  Google Scholar 

  41. P. Liu, J. Yang, X. Peng, J. Compos. Mater. 51(11), 1557–1571 (2016)

    Article  Google Scholar 

  42. H. Taheri, L. Koester, T. Bigelow, E. Faierson, L. Bond, J. Manuf. Sci. Eng. 141(4), 041011 (2019)

    Article  Google Scholar 

  43. T. Dixit, E. Al-Hajri, M.C. Paul, Appl. Therm. Eng. 210, 118339 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (grant no. 12172117) and Innovation Team of Nondestructive Testing Technology and Instrument, Hebei University (IT2023C03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhou, Lian-hua Ma or Jia Liu.

Ethics declarations

Conflicts of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Zb., Zhou, W., Ma, Lh. et al. Effect of Heat Treatment on the Damage and Failure Mechanism of 3D Printed Continuous Fiber Composites Using Acoustic Emission. Fibers Polym 24, 2117–2131 (2023). https://doi.org/10.1007/s12221-023-00214-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00214-8

Keywords

Navigation