Skip to main content
Log in

Investigation on Transmission Property of Warp-Knitted Spacer Fabric in Primary Resonance Using Nonlinear System Model

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript


This paper was an attempt to present a theoretical analysis of the vibration transmission property of spacer fabric as a vibration isolator. To this aim, a novel nonlinear single degree of freedom model for the spacer fabric prompted by harmonic motion of the support was developed. The nonlinear second-order differential equation of the motion was solved using multiple scales method, and a closed form relation was obtained for calculating the transmission coefficient of the vibration. Compression-force displacement characteristics of six different spacer fabric samples were obtained experimentally and the transmission coefficients for these samples were calculated. The results revealed that for all of the samples under study, with increase in isolator mass, the amplitude of the steady state vibration decreased. Moreover, for the fabrics having hardening force–displacement behavior, with increase in the excitation level, the maximum amplitude of the transmission coefficient did not vary and proved to be independent from the excitation level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others


  1. R. Bagherzadeh, M. Montazer, M. Latifi, M. Sheikhzadeh, M. Sattari, Fiber. Polym. 8, 386 (2007)

    Article  CAS  Google Scholar 

  2. R. Bagherzadeh, M. Gorji, M. Latifi, P. Payvandy, L.X. Kong, Fiber. Polym. 13, 529 (2012)

    Article  Google Scholar 

  3. J. Yip, S.-P. Ng, J. Mater. Process. Tech. 209, 58 (2009)

    Article  CAS  Google Scholar 

  4. Y. Liu, H. Hu, H. Long, L. Zhao, Text. Res. J. 82, 773 (2012)

    Article  CAS  Google Scholar 

  5. S. Pereira, S. Anand, S. Rajendran, C. Wood, J. Ind. Text. 36, 279 (2007)

    Article  CAS  Google Scholar 

  6. T.P. Rajan, L.D. Souza, G. Ramakrishnan, G.M. Zakriya, J. Ind. Text. 45, 1239 (2016)

    Article  CAS  Google Scholar 

  7. W. Doyen, W. Mues, B. Molenberghs, B. Cobben, Desalination 250, 1078 (2010)

    Article  CAS  Google Scholar 

  8. X. Ye, R. Fangueiro, H. Hu, and M. d. Araújo, J. Text. Inst., 98, 337 (2007).

  9. X. Ye, H. Hu, X. Feng, J. Ind. Text. 37, 213 (2008)

    Article  Google Scholar 

  10. Y. Liu, H. Hu, J. Text. Inst. 102, 366 (2011)

    Article  CAS  Google Scholar 

  11. M. Xuhong, K. Xiangyong, J. Gaoming, J. Ind. Text. 43, 281 (2013)

    Article  Google Scholar 

  12. Y. Liu, H. Hu, L. Zhao, H. Long, Text. Res. J. 82, 11 (2012)

    Article  CAS  Google Scholar 

  13. M. Xu-hong, G. Ming-Qiao, Fibres Text. East. Eur. 16, 90 (2008)

    Google Scholar 

  14. M. Yousefpour, P. Payvandy, M.S. Ahmadi, J. Text. Inst. 109, 312 (2018)

    Article  Google Scholar 

  15. X. Guo, H. Long, L. Zhao, Text. Res. J. 83, 904 (2013)

    Article  CAS  Google Scholar 

  16. Y. Liu, H. Hu, J. Eng. Fibers Fabr. 9, 155892501400900200 (2014)

    Google Scholar 

  17. Y. Liu, W.M. Au, H. Hu, Text. Res. J. 84, 422 (2014)

    Article  CAS  Google Scholar 

  18. Y. Liu, H. Hu, W.M. Au, Text. Res. J. 84, 312 (2014)

    Article  CAS  Google Scholar 

  19. Z. Du, Y. Wu, Y. Wu, L. He, Text. Res. J. 86, 1443 (2016)

    Article  CAS  Google Scholar 

  20. Z. Du, H. Hu, Text. Res. J. 82, 1569 (2012)

    Article  CAS  Google Scholar 

  21. Z. Du, H. Hu, Text. Res. J. 83, 794 (2013)

    Article  CAS  Google Scholar 

  22. Z. Du, M. Li, Y. Wu, L. He, J. Ind. Text. 46, 1362 (2017)

    Article  Google Scholar 

  23. Y. Liu, H. Hu, Text. Res. J. 86, 3 (2016)

    Article  Google Scholar 

  24. Y. Liu, H. Hu, Text. Res. J. 85, 2020 (2015)

    Article  CAS  Google Scholar 

  25. Y. Liu, H. Hu, Int. J. Mech. Sci. 94, 244 (2015)

    Article  Google Scholar 

  26. M. Li, H. Yang, P. Liu, Z. Du, J. Fiber Bioeng. Inf. 8, 267 (2015)

    Article  Google Scholar 

  27. Y. Liu, H. Hu, Polym. Test. 47, 120 (2015)

    Article  CAS  Google Scholar 

  28. C. Chen, J. Chen, F. Sun, H. Yang, Z. Du, Text. Res. J. 88, 790 (2018)

    Article  CAS  Google Scholar 

  29. C. Chen, J. Chen, F. Sun, H. Yang, Z. Lv, Q. Zhou, Z. Du, W. Yu, Text. Res. J. 88, 922 (2018)

    Article  CAS  Google Scholar 

  30. A. H. Nayfeh, D. T. Mook, “Nonlinear Oscillations”, John Wiley & Sons (2008)

  31. M. Taghvaie, P. Payvandy, M. Jalili, Fiber. Polym. 21, 1849 (2020)

    Article  CAS  Google Scholar 

  32. W. T. Thomson, M. D. Dahleh, “Theory of vibration with application”, Prentice Hall (2006)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to P. Payvandy.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghvaie, M., Payvandy, P. & Jalili, M.M. Investigation on Transmission Property of Warp-Knitted Spacer Fabric in Primary Resonance Using Nonlinear System Model. Fibers Polym 24, 2239–2253 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: