Skip to main content
Log in

Long-Term Prediction of Creep and Stress-Relaxation Behaviour in Synthetic Fabrics Using the Time–Temperature Superposition Principle

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this work, time and temperature-dependent viscoelastic properties, i.e., creep and stress relaxation of synthetic fabrics have been studied using the dynamic mechanical analyser. Three different fabric materials viz. polyester (PET), polypropylene (PP) and Nylon 6,6 (PA) were used and tests were carried out at a wide range of temperatures from 35 to 110 °C with an interval of 15 °C after each test. Thereafter, the master curve for each fabric is generated at 35 °C using the time–temperature superposition (TTS) principle which extrapolates short time experimental data to a longer time scale by shifting experimental curves of different temperatures toward the reference temperature (35 °C) and superimposes them to obtain a smooth master curve. From the creep study, it is observed that PET fabric is expected to give greater creep resistance with minimal deformation in creep strain of about 39% followed by 53% in PA and 128% in PP even after 10 years. Besides, in the stress relaxation study, relaxation modulus for all fabrics tends to decrease with increasing temperature. It is found that PA fabric showed a slow reduction of relaxation modulus even after 10 years, which gives about 55% reduction followed by PET (68%) and PP (75%) from its initial value. In addition, true stress versus time curves showed that a higher true stress value in PA followed by PP and PET is referring to its higher relaxation modulus. It was found that initial modulus, glass transition temperature (Tg) and crystallinity of fibre plays an important role in determining creep and stress relaxation behaviour of the fabrics. On the other side, the correlation between experimental data and theoretical data ascertains the use of viscoelastic Burger’s model and Weibull distribution equation model for creep and stress relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability statement

The data that support the findings of this study will be available on request from the corresponding author Dr. Mangala Joshi.

References

  1. C.A. Lawrence, High-Performance Textile and Their Applications (2014), pp. 1–69. https://doi.org/10.1016/C2013-0-17069-9 (ISBN: 978-1-84569-180-6)

  2. S. Grishanov, High perform, in Text Their Appl, 1st edn., ed. by C.A. Lawrence (Woodhead Publishing, London, 2014), pp. 1–69

    Google Scholar 

  3. K. Srinivas, Stress relaxation and creep of polymers and composite materials (Ahmedabad, India, 2020)

    Google Scholar 

  4. A. Asayesh, A.A.A. Jeddi, Text. Res. J. 80, 642 (2010)

    Article  CAS  Google Scholar 

  5. G.D. Dean, Polym. Test. 30, 229 (2011)

    Article  CAS  Google Scholar 

  6. P.A. Sopade, P. Halley, B. Bhandari, B. D’Arcy, C. Doebler, N. Caffin, J. Food Eng. 56, 67 (2003)

    Article  Google Scholar 

  7. J. Capodagli, R. Lakes, J. Capodagli, R. Lakes, Rheol Acta 47, 777 (2008)

    Article  CAS  Google Scholar 

  8. A.J. Ariza, M. Marjorie, M. Augusto, C.A. Costa, M.F. Costa, Polym. Test. 82, 106312 (2020)

    Article  Google Scholar 

  9. C. Xue, H. Gao, Y. Hu, G. Hu, Polym. Test. 87, 106509 (2020)

    Article  CAS  Google Scholar 

  10. R. Rafiee, A. Ghamarzadeh, Polym. Compos. 44, 1 (2023)

    Article  Google Scholar 

  11. R. Rafiee, A. Ghorbanhosseini, Thin-Walled Struct. 151, 106714 (2020)

    Article  Google Scholar 

  12. R. Rafiee, A. Ghorbanhosseini, Fibres Polym. 22, 222 (2021)

    Article  CAS  Google Scholar 

  13. R. Rafiee, B. Mazhari, Constr. Build. Mater. 122, 694 (2016)

    Article  Google Scholar 

  14. R. Rafiee, B. Mazhari, Compos. Struct. 136, 56 (2016)

    Article  Google Scholar 

  15. R. Rafiee, A. Ghorbanhosseini, Compos. Struct. 254, 1 (2020)

    Article  Google Scholar 

  16. D. Ionita, M. Cristea, C. Gaina, Polym. Test. 83, 106340 (2020)

    Article  CAS  Google Scholar 

  17. X. Gao, H. Chen, S. Sun, Fibres Text. East. Eur. 1, 72 (2015)

    Google Scholar 

  18. Z. Xu, Y. Liu, B. Wang, J. Nucl. Mater. 557, 153215 (2021)

    Article  CAS  Google Scholar 

  19. M.D. Nikolic, T.V. Mihailovic, Int. J. Cloth. Sci. Technol. 8, 9 (1996)

    Article  Google Scholar 

  20. V. Urbelis, A. Petrauskas, A. Vitkauskas, Fibres Text. East. Eur. 4, 37 (2004)

    Google Scholar 

  21. V. Urbelis, A. Petrauskas, A. Vitkauskas, Mater. Sci. 11, 162 (2005)

    Google Scholar 

  22. F. M. Monticeli, H. L. Ornaghi, R. M. Neves, and M. Odila Hilário Cioffi, J. Strain Anal. 55(3-4), 109–117 (2020). https://doi.org/10.1177/0309324719892710

  23. N. Lorandi, M. Odila Hilário Cioffi, C. Shigue, and H. L. Ornaghi, Mater. Res. 21(3), e20170768 (2018). https://doi.org/10.1590/1980-5373-mr-2017-0768

  24. Dynamic Mechanical Analysis - Chemistry LibreTexts. Weblink: 2.10. (2018) https://chem.libretexts.org/

  25. ASTM D5035—breaking strength and elongation of textile fabrics (Strip Method) (2019).

  26. M. Dogan, A. Kayacier, Ö.S. Toker, Food Bioprocess Technol. 6, 1420–1433 (2013). https://doi.org/10.1007/s11947-012-0872-z

    Article  CAS  Google Scholar 

  27. Y. Jia, K. Peng, X.L. Gong, Z. Zhang, Int. J. Plast. 27, 1239 (2011)

    Article  CAS  Google Scholar 

  28. P. Hajikarimi, F. Moghadas Nejad, Applications of viscoelasticity (Elsevier, New York, 2021), pp.85–105

    Google Scholar 

  29. Y.F. Shutilin, Polym. Sci. U.S.S.R 33, 119 (1991)

    Article  Google Scholar 

  30. D. Ljubic, M. Stamenovic, C. Smithson, M. Nujkic, B. Međo, S. Putic, Zast. Mater. 55, 395 (2014)

    Google Scholar 

  31. M.H. Zohdy, S.S. Mohamed, A.W.M. El-Naggar, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 222, 105 (2004)

    Article  CAS  Google Scholar 

  32. J. Wiener, A. Chládová, S. Shahidi, L. Peterová, AUTEX Res. J. 17, 370 (2017)

    Article  CAS  Google Scholar 

  33. E. Kontou, Creep analysis of polymer matrix composites using viscoplastic models. In: Creep and Fatigue in Polymer Matrix Composites, 2nd edn., (2019), pp. 215–248. https://doi.org/10.1016/B978-0-08-102601-4.00006-0

  34. J.W. Nicholson, The chemistry of polymers, second (The Royal Society of Chemistry, Cambridge, 1997)

    Book  Google Scholar 

  35. R. Greco, L. Nicolais, Polymer 17, 1049 (1976)

    Article  CAS  Google Scholar 

  36. Glass Transition Temperature of Polymers (2012). https://www.protolabs.com/resources/design-tips/glass-transition-temperature-of-polymers/

  37. Glass Transition Temperature (Tg) of Plastics - Definition & Values (2014). https://omnexus.specialchem.com/polymer-properties/properties/glass-transition-temperature

  38. R.M. Guedes, Polym. Test. 30, 294 (2011)

    Article  CAS  Google Scholar 

  39. B.M.D. Fernando, X. Shi, S.G. Croll, J. Coatings Technol. Res. 5, 1 (2008)

    Article  CAS  Google Scholar 

  40. H.L. Ornaghi, J.H.S. Almeida, F.M. Monticeli, R.M. Neves, Compos. Part C Open Access 3, 100051 (2020)

    Article  CAS  Google Scholar 

  41. J.M. Choung, S.R. Cho, J. Mech. Sci. Technol. 22, 1039 (2008)

    Article  Google Scholar 

  42. A. Rauh, R. Hinterholzl, K. Drechsler, Eur. Phyical J. Spec. Top. 206, 15 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the DRDO’s Lab Aerial Delivery Research and Development Establishment (ADRDE), Agra, India for sponsoring this project (RP03465G). The authors also acknowledge a joint venture between DRDO and IIT Delhi named Joint Advanced Technology Centre (JATC) for providing lab facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangala Joshi.

Ethics declarations

Conflict of Interest

The authors declare no potential conflict of interest in relation with the research, authorship, and/or publication of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandlekar, N., Rana, B., Maurya, P. et al. Long-Term Prediction of Creep and Stress-Relaxation Behaviour in Synthetic Fabrics Using the Time–Temperature Superposition Principle. Fibers Polym 24, 2195–2207 (2023). https://doi.org/10.1007/s12221-023-00181-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00181-0

Keywords

Navigation