Skip to main content
Log in

The Effect of Self-Healing Agent Fraction on CFRP Mechanical Behavior: Statistical Analysis Approach

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The self-healing application in structural composites aims to recover component properties, control damage propagation, and increase component life. In this way, this study proposes to characterize and predict the inter-laminar shear behavior of polymer composites (5HS carbon/epoxy) with different fractions of self-healing agent. In addition, this work aims to measure the influence of self-healing content on the mechanical response. The ANOVA evidenced that the healing agent fraction influences on mechanical properties more than the internal dispersion for the same laminate before the healing cycle. Weibull distribution evidenced a linear decrease in shear stresses for higher EMAA (poly(ethylene-co-methacrylic acid)) content, regarding stiffness decrease as a response to ductile thermoplastic behavior. Ineffective healing effects were observed for the translaminar and intra-laminar damage, once most particles were concentrated in inter-laminar sections. However, the healing efficiency reached an average of 62% for shear stress and 106% for toughness behavior, provided by the closing shear cracks, i.e., up to 57% of reduced area related to the initial crack size. The predictive approach before and after healing action in the mechanical behavior provides the appropriate self-healing level to meet the specific project requirements, thus saving time and cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author upon request.

References

  1. V. Mathes, The composites industry: plenty of opportunities in heterogeneous market. Reinf. Plast. 62, 44–51 (2018). https://doi.org/10.1016/j.repl.2017.05.002

    Article  Google Scholar 

  2. A.H.S. dos Souza, G.A. Batista, L. Figueiredo, P.V.C.C.M. de Valvazori, Y. Mihara, M.S. Amarante, Composite materials in aeronautics: an analysis of trends in the fuselation of aircraft. Pesqui Em Ação 4, 240–246 (2018)

    Google Scholar 

  3. B. Lu, The boeing 787 dreamliner: designing an aircraft for the future. J. Young Investig. 1, 1–4 (2010)

    Google Scholar 

  4. S. Georgiadis, A.J. Gunnion, R.S. Thomson, B.K. Cartwright, Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge. Compos. Struct. 86, 258–268 (2008). https://doi.org/10.1016/j.compstruct.2008.03.025

    Article  Google Scholar 

  5. Clarke M, Smart J, Botero E, Maier W, Alonso JJ. Strategies for posing a well-defined problem for urban air mobility vehicles. AIAA Scitech (2019). Pp. 1–14. https://doi.org/10.2514/6.2019-0818.

  6. T. Donateo, A. Ficarella, A modeling approach for the effect of battery aging on the performance of a hybrid electric rotorcraft for urban air-mobility. Aerospace 7, 56 (2020). https://doi.org/10.3390/AEROSPACE7050056

    Article  Google Scholar 

  7. V. Kostopoulos, A. Kotrotsos, A. Sousanis, G. Sotiriadis, Fatigue behaviour of open-hole carbon fibre/epoxy composites containing bis-maleimide based polymer blend interleaves as self-healing agent. Compos. Sci. Technol. 171, 86–93 (2019). https://doi.org/10.1016/j.compscitech.2018.12.013

    Article  CAS  Google Scholar 

  8. K. Pingkarawat, C.H. Wang, R.J. Varley, A.P. Mouritz, Self-healing of delamination fatigue cracks in carbon fibre-epoxy laminate using mendable thermoplastic. J. Mater. Sci. 47, 4449–4456 (2012). https://doi.org/10.1007/s10853-012-6303-8

    Article  CAS  Google Scholar 

  9. Q. Ma, hua, Dong F, Gan X hui, Zhou T., Effects of different interface conditions on energy absorption characteristics of Al/carbon fiber reinforced polymer hybrid structures for multiple loading conditions. Polym. Compos. 42, 2838–2863 (2021). https://doi.org/10.1002/pc.26019

    Article  CAS  Google Scholar 

  10. Y. Zhan, Q. Ma, X. Gan, M. Cai, T. Zhou, Deformation and energy absorption characters of Al-CFRP hybrid tubes under quasi-static. Polym. Compos. 41, 4602–4618 (2020)

    Article  Google Scholar 

  11. M. Qi-hua, D. Fan, G. Xue-hui, Z. Tianjun, Crashworthiness design of gradient bionic Al/CFRP hybrid tubes under multiple loading conditions. Mech. Adv. Mater. Struct. 1, 1–18 (2022)

    Article  Google Scholar 

  12. A. Azevedo do Nascimento, F. Fernandez, S. da Silva, P.C.E. Ferreira, J.D. José, A.P. Cysne Barbosa, Addition of poly (ethylene-co-methacrylic acid) (EMAA) as self-healing agent to carbon-epoxy composites. Compos. Part A Appl. Sci. Manuf. 137, 106016 (2020). https://doi.org/10.1016/j.compositesa.2020.106016

    Article  CAS  Google Scholar 

  13. D.G. Bekas, K. Tsirka, D. Baltzis, A.S. Paipetis, Self-healing materials : A review of advances in materials, evaluation, characterization and monitoring techniques. Compos. Part B 87, 92–119 (2016). https://doi.org/10.1016/j.compositesb.2015.09.057

    Article  CAS  Google Scholar 

  14. B.M.D. Hager, P. Greil, C. Leyens, Z.S. Van Der, U.S. Schubert, Self-healing materials. Adv. Mater. 22, 5424–5430 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. R.P. Wool, Self-healing materials : a review. Soft Matter 4, 400 (2008). https://doi.org/10.1039/b711716g

    Article  CAS  PubMed  Google Scholar 

  16. M.R. Kessler, S.R. White, Self-activated healing of delamination damage in woven composites. Compos. Part A Appl. Sci. Manuf. 32, 683–699 (2001). https://doi.org/10.1016/S1359-835X(00)00149-4

    Article  Google Scholar 

  17. R.B. Ladani, C.H. Wang, A.P. Mouritz, Delamination fatigue resistant three-dimensional textile self-healing composites. Compos. Part A Appl. Sci. Manuf. 127, 105626 (2019). https://doi.org/10.1016/j.compositesa.2019.105626

    Article  Google Scholar 

  18. G. de Souza, J.R. Tarpani, Interleaving CFRP and GFRP with a thermoplastic ionomer: the effect on bending properties. Appl. Compos. Mater. 28, 559–572 (2021). https://doi.org/10.1007/s10443-021-09874-2

    Article  CAS  Google Scholar 

  19. Q. OuYang, X. Wang, L. Liu, High crack self-healing efficiency and enhanced free-edge delamination resistance of carbon fibrous composites with hierarchical interleaves. Compos. Sci. Technol. 217, 109115 (2022). https://doi.org/10.1016/j.compscitech.2021.109115

    Article  CAS  Google Scholar 

  20. A.I. Selmy, N.A. Azab, M.A. Abd El-Baky, Flexural fatigue characteristics of two different types of glass fiber/epoxy polymeric composite laminates with statistical analysis. Compos. Part B Eng. 45, 518–527 (2013). https://doi.org/10.1016/j.compositesb.2012.08.017

    Article  CAS  Google Scholar 

  21. A.I. Selmy, M.A. El-Baky, N.A. Azab, Experimental study on flexural fatigue behavior of glass fibers/epoxy hybrid composites with statistical analysis. J. Reinf. Plast. Compos. 32, 1821–1834 (2013). https://doi.org/10.1177/0731684413496879

    Article  CAS  Google Scholar 

  22. A.I. Selmy, N.A. Azab, M.A. El-Baky, Statistical analysis of monotonic mechanical properties for unidirectional glass fiber (U)/random glass fiber (R)/epoxy hybrid and non-hybrid polymeric composites. J Compos. Mater. 48, 455–469 (2014). https://doi.org/10.1177/0021998312474046

    Article  Google Scholar 

  23. M.A. Abd El-baky, M.A. Attia, M. Kamel, Flexural fatigue and failure probability analysis of polypropylene-glass hybrid fibres reinforced epoxy composite laminates. Plast. Rubber Compos. 47, 47–64 (2018). https://doi.org/10.1080/14658011.2017.1397252

    Article  CAS  Google Scholar 

  24. M.A. Abd El-baky, Evaluation of mechanical properties of jute/glass/carbon fibers reinforced hybrid composites. Fibers Polym. 18, 2417–2432 (2017). https://doi.org/10.1007/s12221-017-7682-x

    Article  CAS  Google Scholar 

  25. M.A. Attia, M.A. Abd El-Baky, A.E. Alshorbagy, Mechanical performance of intraply and inter-intraply hybrid composites based on e-glass and polypropylene unidirectional fibers. J. Compos. Mater. 51, 381–394 (2017). https://doi.org/10.1177/0021998316644972

    Article  CAS  Google Scholar 

  26. I.F. Ituarte, S. Panicker, H.P.N. Nagarajan, E. Coatanea, D.W. Rosen, Optimisation-driven design to explore and exploit the process–structure–property–performance linkages in digital manufacturing. J. Intell. Manuf. 1, 1–23 (2022). https://doi.org/10.1007/s10845-022-02010-2

    Article  Google Scholar 

  27. M. Azizian, J.H.S. Almeida, Stochastic, probabilistic and reliability analyses of internally-pressurised filament wound composite tubes using artificial neural network metamodels. Mater. Today Commun. 31, 103627 (2022). https://doi.org/10.1016/j.mtcomm.2022.103627

    Article  CAS  Google Scholar 

  28. F.M. Monticeli, H.L. Ornaghi, H.J.C. Woorwald, M.O.H. Cioffi, Three-dimensional porosity characterization in carbon / glass fiber epoxy hybrid composites. Compos. Part A Appl. Sci. Manuf. 125, 105555 (2019). https://doi.org/10.1016/j.compositesa.2019.105555

    Article  CAS  Google Scholar 

  29. American Society for Testing and Materials, ASTM D2344 D2344M-16, Standard test method for short-beam strength of polymer matrix composite materials and their laminates. ASTM Int. (2016). https://doi.org/10.1520/D2344

    Article  Google Scholar 

  30. F.M. Beremin, A. Pineau, F. Mudry, J.C. Devaux, Y. D’Escatha, P. Ledermann, A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metall Trans. A 14, 2277–2287 (1983). https://doi.org/10.1007/BF02663302

    Article  Google Scholar 

  31. X. Gao, R.H. Dodds, R.L. Tregoning, J.A. Joyce, R.E. Link, A Weibull stress model to predict cleavage fracture in plates containing surface cracks. Fatigue Fract. Eng. Mater. Struct. 22, 481–493 (1999). https://doi.org/10.1046/j.1460-2695.1999.00202.x

    Article  Google Scholar 

  32. S.Y. Kim, N.R. Sottos, S.R. White, Self-healing of fatigue damage in cross-ply glass/epoxy laminates. Compos. Sci. Technol. 175, 122–127 (2019). https://doi.org/10.1016/j.compscitech.2019.03.016

    Article  CAS  Google Scholar 

  33. G.P. McCombe, J. Rouse, R.S. Trask, P.J. Withers, I.P. Bond, X-ray damage characterisation in self-healing fibre reinforced polymers. Compos. Part A Appl. Sci. Manuf. 43, 613–620 (2012). https://doi.org/10.1016/j.compositesa.2011.12.020

    Article  CAS  Google Scholar 

  34. G. Williams, R. Trask, I. Bond, A self-healing carbon fibre reinforced polymer for aerospace applications. Compos. Part A Appl. Sci. Manuf. 38, 1525–1532 (2007). https://doi.org/10.1016/j.compositesa.2007.01.013

    Article  CAS  Google Scholar 

  35. I.S. Vintila, S. Draghici, H.A. Petrescu, A. Paraschiv, M.R. Condruz, L.R. Maier, A. Bara, M. Necolau, Evaluation of dispersion methods and mechanical behaviour of glass fibre composites with embedded self-healing systems. Polymers (Basel) 13(1), 1642 (2021). https://doi.org/10.3390/polym13101642

    Article  CAS  PubMed  Google Scholar 

  36. B. Ashrafi, J. Guan, V. Mirjalili, Y. Zhang, L. Chun, P. Hubert, B. Simard, C.T. Kingston, O. Bourne, A. Johnston, Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes. Compos. Sci. Technol. 71, 1569–1578 (2011). https://doi.org/10.1016/j.compscitech.2011.06.015

    Article  CAS  Google Scholar 

  37. N.N.F.N.M.N. Kahar, A.F. Osman, E. Alosime, N. Arsat, N.A.M. Azman, A. Syamsir, Z. Itam, Z.A.A. Hamid, The versatility of polymeric materials as self-healing agents for various types of applications: A review. Polymers (Basel) 13, 1–34 (2021). https://doi.org/10.3390/polym13081194

    Article  CAS  Google Scholar 

  38. R.J. Varley, G.P. Parn, Thermally activated healing in a mendable resin using a non woven EMAA fabric. Compos. Sci. Technol. 72, 453–460 (2012). https://doi.org/10.1016/j.compscitech.2011.12.007

    Article  CAS  Google Scholar 

  39. K. Pingkarawat, T. Bhat, D.A. Craze, C.H. Wang, R.J. Varley, A.P. Mouritz, Healing of carbon fibre-epoxy composites using thermoplastic additives. Polym. Chem. 4, 5007–5015 (2013). https://doi.org/10.1039/c3py00459g

    Article  CAS  Google Scholar 

  40. B. Jony, S. Roy, S.B. Mulani, Fracture resistance of in-situ healed CFRP composite using thermoplastic healants. Mater. Today Commun. 24, 101067 (2020). https://doi.org/10.1016/j.mtcomm.2020.101067

    Article  CAS  Google Scholar 

  41. D.Y. Wu, S. Meure, D. Solomon, Self-healing polymeric materials: A review of recent developments. Prog. Polym. Sci. 33, 479–522 (2008). https://doi.org/10.1016/j.progpolymsci.2008.02.001

    Article  CAS  Google Scholar 

  42. P. Michael, D. Döhler, W.H. Binder, Improving autonomous self healing via combined chemical/physical principles. Polymer (Guildf) 69, 216–227 (2015). https://doi.org/10.1016/j.polymer.2015.01.041

    Article  CAS  Google Scholar 

  43. J. Champagne, S.S. Pang, G. Li, Effect of confinement level and local heating on healing efficiency of self-healing particulate composites. Compos. Part B Eng. 97, 344–352 (2016). https://doi.org/10.1016/j.compositesb.2016.05.002

    Article  CAS  Google Scholar 

  44. A.J. Patel, N.R. Sottos, E.D. Wetzel, S.R. White, Autonomic healing of low-velocity impact damage in fiber-reinforced composites. Compos. Part A Appl. Sci. Manuf. 41, 360–368 (2010). https://doi.org/10.1016/j.compositesa.2009.11.002

    Article  CAS  Google Scholar 

  45. P.S. Tan, A.A. Somashekar, P. Casari, D. Bhattacharyya, Healing efficiency characterization of self-repairing polymer composites based on damage continuum mechanics. Compos. Struct. 208, 367–376 (2019). https://doi.org/10.1016/j.compstruct.2018.09.091

    Article  Google Scholar 

  46. F.M. Monticeli, R.M. Neves, H.L.J. Ornaghi, J.H.S. Almeida, A systematic review on high-performance fiber-reinforced 3D printed thermoset composites. Polym. Compos. 42, 3702–3715 (2021). https://doi.org/10.1002/pc.26133

    Article  CAS  Google Scholar 

  47. C.H. Wang, K. Sidhu, T. Yang, J. Zhang, R. Shanks, Interlayer self-healing and toughening of carbon fibre/epoxy composites using copolymer films. Compos. Part A Appl. Sci. Manuf. 43, 512–518 (2012). https://doi.org/10.1016/j.compositesa.2011.11.020

    Article  CAS  Google Scholar 

  48. Y.P. Chuves, M. Pitanga, I. Grether, M.O. Cioffi, F. Monticeli, The influence of several carbon fiber architecture on the drapability effect. Textile 2, 486–498 (2022). https://doi.org/10.3390/textiles2030027

    Article  Google Scholar 

  49. C. Bai, Q. Ma, X. Gan, T. Zhou, Theoretical prediction model of mean crushing force of CFRP-Al hybrid circular tubes. Polym. Compos. 42, 5035–5050 (2021)

    Article  CAS  Google Scholar 

  50. R. Khan, R. Alderliesten, R. Benedictus, Two-parameter model for delamination growth under mode i fatigue loading (Part A: Experimental study). Compos. Part A Appl. Sci. Manuf. 65, 192–200 (2014). https://doi.org/10.1016/j.compositesa.2014.06.007

    Article  CAS  Google Scholar 

  51. F.M. Monticeli, M.O.H. Cioffi, H.J.C. Voorwald, Mode II delamination of carbon-glass fiber/epoxy hybrid composite under fatigue loading. Int. J. Fatigue 154, 106574 (2022). https://doi.org/10.1016/j.ijfatigue.2021.106574

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from São Paulo Research Foundation (FAPESP Grant no: 2017/10606-4; 2020/09422-9), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES finance code 001), and National Council for Scientific and Technological Development (CNPq).

Funding

FAPESP,2017/10606-4, Francisco Monticeli, 2021/05706-5,Francisco Monticeli,2019/04412-8, Maria Odila Hilário Cioffi, 2020/09422-9, Yuri Pereira Chuves, CAPES, 001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuri Pereira Chuves or Francisco Maciel Monticeli.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuves, Y.P., Monticeli, F.M., do Nascimento, A.A. et al. The Effect of Self-Healing Agent Fraction on CFRP Mechanical Behavior: Statistical Analysis Approach. Fibers Polym 24, 729–740 (2023). https://doi.org/10.1007/s12221-023-00103-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00103-0

Keywords

Navigation