Skip to main content
Log in

Effect of Drawing Conditions on Crystal Structure and Mechanical Properties of Melt-Spun Polylactic Acid Fibers

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Polylactic acid (PLA) is a biomass-based, eco-friendly, and biodegradable aliphatic polyester. Compared to aromatic polyesters, PLA is not suitable for applications that require high strength and heat resistance. In this study, the extrusion parameters of the melt-spinning process of PLA, namely, the godet temperature (95 and 100 °C), draw ratio (2.0–4.0), and take-up speed (4000–4400 m/min) were optimized. As the draw ratio and take-up speed of the fiber increased, the tensile strength and melting temperature increased owing to orientation-induced crystallization until necking of the fibers occurred. The properties of the PLA fibers were measured using X-ray diffraction, a universal testing machine, differential scanning calorimetry, and Fourier-transform infrared spectroscopy. The maximum crystallinity achieved in the PLA fiber was 84.76%. The tensile strength of the fiber was increased from 86.25 to 124.06 MPa and the melting temperature was increased from 149.51 to 155.14 °C. Therefore, it is concluded that understanding the correlation between the process parameters and fibers and combining them appropriately facilitates the control of the mechanical and thermal properties of the PLA fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the fndings of this study are available in https://doi.org/10.1007/s12221-023-00091-1.

References

  1. H.S. Park, C.K. Hong, Polymers (Basel) (2021). https://doi.org/10.3390/polym13111851

    Article  PubMed  PubMed Central  Google Scholar 

  2. B. Gupta, N. Revagade, J. Hilborn, Prog. Polym. Sci 32, 455 (2007)

    Article  CAS  Google Scholar 

  3. A.A. Singh, M.E. Genovese, G. Mancini, L. Marini, A. Athanassiou, ACS Sustain. Chem. Eng. 8, 4128 (2020)

    Article  CAS  Google Scholar 

  4. R.A. Auras, L.-T. Lim, S.E. Selke, H. Tsuji, Poly (lactic acid): synthesis, structures, properties, processing, and applications (Wiley, 2011)

    Google Scholar 

  5. R.E. Drumright, P.R. Gruber, D.E. Henton, Adv. Mater. 12, 1841 (2000)

    Article  CAS  Google Scholar 

  6. S. Sharma, A. Majumdar, B.S. Butola, Int. J. Biol. Macromol. 181, 1092–103 (2021)

    Article  CAS  PubMed  Google Scholar 

  7. N. Tripathi, M. Misra, A.K. Mohanty, ACS Eng. Au 1, 7 (2021)

    Article  CAS  Google Scholar 

  8. F. Mai, W. Tu, E. Bilotti, T. Peijs, Fibers 3, 523 (2015)

    Article  CAS  Google Scholar 

  9. J.S. Dugan, Int. Nonwovens J. (2001). https://doi.org/10.1177/1558925001OS-01000308

    Article  Google Scholar 

  10. S. Farah, D.G. Anderson, R. Langer, Adv. Drug Deliv. Rev. 107, 367 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. S. Saeidlou, M.A. Huneault, H. Li, C.B. Park, Prog. Polym. Sci. 37, 1657 (2012)

    Article  CAS  Google Scholar 

  12. K.M.Z. Hossain, A.J. Parsons, C.D. Rudd, I. Ahmed, W. Thielemans, Eur. Polym. J. 53, 270 (2014)

    Article  CAS  Google Scholar 

  13. K. Das, D. Ray, I. Banerjee, N.R. Bandyopadhyay, S. Sengupta, A.K. Mohanty, M. Misra, J. Appl. Polym. Sci. 118, 143 (2010)

    Article  CAS  Google Scholar 

  14. C.M. Clarkson, S.M. El Awad Azrak, R. Chowdhury, S.N. Shuvo, J. Snyder, G. Schueneman, V. Ortalan, J.P. Youngblood, ACS Appl. Polym. Mater. 1, 160 (2018)

    Article  Google Scholar 

  15. Y. Srithep, D. Pholharn, J. Morris, “Injection-molded poly(L-lactic acid)/poly(D-lactic acid) blends: Thermal and mechanical properties” (2019)

  16. L.T. Lim, R. Auras, M. Rubino, Prog. Polym. Sci 33, 820 (2008)

    Article  CAS  Google Scholar 

  17. J.A. Cicero, J.R. Dorgan, J. Polym. Environ. 9, 1 (2001)

    Article  CAS  Google Scholar 

  18. F. Wu, M. Misra, A.K. Mohanty, Polym. Cryst. (2019). https://doi.org/10.1002/pcr2.10088

    Article  Google Scholar 

  19. R. Ortega-Toro, A. Lopez-Cordoba, F. Avalos-Belmontes, Heliyon 7, e06176 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. C.R. Gajjar, J.W. Stallrich, M.A. Pasquinelli, M.W. King, ACS Omega 6, 15920 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Q. Mao, T.P. Wyatt, A.-T. Chien, J. Chen, D. Yao, Polym. Eng. Sci 56, 233 (2016)

    Article  CAS  Google Scholar 

  22. R. Tomisawa, T. Ikaga, K.H. Kim, Y. Ohkoshi, K. Okada, H. Masunaga, T. Kanaya, M. Masuda, Y. Maeda, Polymer 116, 367 (2017)

    Article  CAS  Google Scholar 

  23. H.J. Oh, D.K. Kim, Y.C. Choi, S.J. Lim, J.B. Jeong, J.H. Ko, W.G. Hahm, S.W. Kim, Y. Lee, H. Kim, B.J. Yeang, Sci. Rep. 10, 16339 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. H. Wang, J. Zhang, K. Tashiro, Macromolecules 50, 3285 (2017)

    Article  CAS  Google Scholar 

  25. Ö. Güzdemir, V. Bermudez, S. Kanhere, A.A. Ogale, Polym. Eng. Sci 60, 1158 (2020)

    Article  Google Scholar 

  26. V. Arias, K. Odelius, A. Hoglund, A.C. Albertsson, ACS Sustain. Chem. Eng. 3, 2220 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S. Jia, D. Yu, Y. Zhu, Z. Wang, L. Chen, L. Fu, Polymers (Basel) (2017). https://doi.org/10.3390/polym9100528

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Trade, Industry & Energy (MOTIE, Korea) development of professional human resources training project (Grant number P0012770); Textile composite structure virtual engineering platform construction (Grant number N0002602). This work was supported by the Ministry of Science and ICT (MSIT, Korea) development of ultra-high performance aramid copolymer fiber and design of nonwoven intermediate for composite applications (Grant number 2021M3H4A3A01043764).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaseung Koo.

Ethics declarations

Conflict of Interest

No potential conflict of interest was reported by the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noh, S., Jung, W., Sim, S. et al. Effect of Drawing Conditions on Crystal Structure and Mechanical Properties of Melt-Spun Polylactic Acid Fibers. Fibers Polym 24, 483–488 (2023). https://doi.org/10.1007/s12221-023-00091-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00091-1

Keywords

Navigation