Skip to main content
Log in

Hyperbranched Waterborne Polyurethane Solid–Solid Phase Change Material for Thermal Energy Storage in Thermal Management Fabric

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Hyperbranched waterborne polyurethane solid–solid phase change material was prepared by A2 + B3 method in water. Hyperbranched polyurethane solid–solid phase change material (HBPUPCM) was synthesized through reaction of isocyanate terminated prepolymer (A2) with trimethylolpropane (B3). Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance were used to confirm the prepared HBPUPCM. Differential scanning calorimetry showed that the maximum latent heat of HBPUPCM was ΔHm of 161.57 J/g and ΔHc of 153.44 J/g. The thermal storage ability was stable even after 500 consecutive heating/cooling cycles. The as-prepared HBPUPCM had excellent thermal stability as was shown by thermogravimetric analyzer. In addition, X-ray diffraction and polarized optical microscopy showed that HBPUPCM had crystalline structure. Meanwhile, when the poly(ethylene glycol) content was 80 wt%, the cotton fabric finished with HBPUPCM had a lower heating and cooling rate, higher phase change enthalpy and better temperature regulation performance in comparison with the unfinished cotton fabric. The HBPUPCM may be highly feasible and promising in the field of intelligent thermoregulation fabric industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Date availability

All data needed to evaluate the conclusions in the paper are presented in the paper. Additional data related to this paper may be requested from the authors.

References

  1. X.S. Du, J. Qiu, H.S. Deng, Z.L. Du, X. Cheng, H.B. Wang, ACS Sustain Chem. Eng 8, 5799 (2020)

    Article  CAS  Google Scholar 

  2. Y. Nan, C. Chao, M. Khamid, F.T. Han, Z. Chen, L.X. Jiang, Y.R. Li, Renew. Energ 150, 808 (2020)

    Article  Google Scholar 

  3. Q. Mao, Y. Zhang, Renew. Energ 152, 110 (2020)

    Article  CAS  Google Scholar 

  4. B. Msa, B.D.H. Anka, J. Mol. Liq 300, 1 (2019)

    Google Scholar 

  5. Y.F. Shih, C.H. Wang, M.L. Tsai, J.M. Jehng, Mater. Chem. Phys 242, 122498 (2019)

    Article  Google Scholar 

  6. F. Xiong, K.J. Yuan, W. Aftab, H.Y. Jiang, J.M. Shi, Z.B. Liang, S. Gao, R.Q. Zhong, H.L. Wang, R.Q. Zou, ACS Appl. Mater. Interfaces 13, 1377 (2021)

    Article  CAS  PubMed  Google Scholar 

  7. K. Snehal, B.B. Das, S. Kumar, J. Mater. Civil. Eng 32, 04020108 (2020)

    Article  CAS  Google Scholar 

  8. B. Hemmatian, N. Heidarzadeh, G.C. Fard, L. Maleknia, Mater. Chem. Phys. 245, 122738 (2020)

    Article  Google Scholar 

  9. W. Zhang, S.J. Hao, Y. Zhang, S. Wei, Text. Res. J 91, 1239 (2020)

    Article  Google Scholar 

  10. H. Liu, H.H. Shen, H.Z. Zhang, X.D. Wang, J. Energy, Storage 49, 1091 (2022)

    Google Scholar 

  11. H. Liu, X.D. Wang, D.Z. Wu, Sustain. Energ. Fuels 3, 1091 (2019)

    Article  CAS  Google Scholar 

  12. X. Fu, Y. Xiao, K. Hu, J. Wang, C. Zhou, Chem. Eng. J. 291, 138 (2016)

    Article  CAS  Google Scholar 

  13. H. Ke, S. Zhen, Appl. Therm. Eng. 113, 1319 (2017)

    Article  CAS  Google Scholar 

  14. S.Y. Kee, Y. Munusamy, K.S. Ong, Appl. Therm. Eng 131, 455 (2018)

    Article  CAS  Google Scholar 

  15. H. Schmit, C. Rathgeber, P. Hoock, S. Hiebler, Thermochim. Acta 683, 178477 (2019)

    Article  Google Scholar 

  16. Z. Fan, P. Han, Z. Zhang, Z. Hu, J. Renew. Sustain. Energ. 12, 014102 (2020)

    Article  CAS  Google Scholar 

  17. X.G. Ma, L. Wang, L. Li, W.F. Yang, Q.T. Meng, J. Macromol. Sci. A 56, 588 (2019)

    Article  CAS  Google Scholar 

  18. M. Rahimi, J. Mokhtari, J. Ind. Text. 47, 1134 (2016)

    Article  Google Scholar 

  19. M. Rahimi, J. Mokhtari, Polym. Eng. Sci. 58, 1756 (2018)

    Article  CAS  Google Scholar 

  20. B. Wu, Z. Liu, Y. Xiao, Y. Wang, J. Lei, J. Appl. Polym. Sci. 136, 185 (2019)

    Google Scholar 

  21. W. Hong, C. Zhang, J. Sun, S. Wu, K.J. Zhang, J.M. Wang, Z.M. Xiao, H. Zhang, Q.S. Li, G.Z. Xing, Integra. Ferroelectr. 189, 175 (2018)

    Article  CAS  Google Scholar 

  22. B. Mu, M. Li, Sol. Energy 188, 230 (2019)

    Article  CAS  Google Scholar 

  23. S. Sundararajan, A.B. Samui, P.S. Kulkarni, J. Macromol. Sci. A 5, 18379 (2017)

    CAS  Google Scholar 

  24. X.S. Du, S. Wang, L. Zong, X. Cheng, B. Hai, J. Mater. Chem. A 6, 17519 (2018)

    Article  CAS  Google Scholar 

  25. W. Kong, Y. Lei, Y. Jiang, J. Lei, J. Therm. Anal. Calorim. 130, 1011 (2017)

    Article  CAS  Google Scholar 

  26. W.H. Wu, X.Y. Huang, K. Li, R.M. Yao, R.J. Chen, R.Q. Zou, Appl. Energ 190, 474 (2017)

    Article  CAS  Google Scholar 

  27. A.Q. Yuan, Y. Wang, Y.Y. Zhao, Q.F. Liu, J.X. Lei, J. Appl. Polym. Sci. 136, 48213 (2019)

    Article  Google Scholar 

  28. X. Du, H. Wang, Z. Du, C. Xu, Thermochim. Acta 651, 58 (2017)

    Article  CAS  Google Scholar 

  29. K. Chen, R.W. Liu, C. Zou, Q.Y. Shao, Y.J. Lan, X.Q. Cai, L.L. Zhai, Sol. Energ. Mat. Sol. C 130, 466 (2014)

    Article  CAS  Google Scholar 

  30. H. Thibault, Thermochim. Acta 130, 466 (2019)

    Google Scholar 

  31. X. Lu, C. Fang, X. Sheng, L. Zhang, J. Qu, Ind. Eng. Chem. Res. 31, 3024 (2019)

    Article  Google Scholar 

  32. Q. Meng, J. Hu, Sol. Energy Mater. Sol. Cells 92, 1245 (2008)

    Article  CAS  Google Scholar 

  33. X. Peng, Y. Duan, P. Fei, X. Lei, B.L. Ran, Cheng. Eur. Polym. J. 48, 1295 (2012)

    Google Scholar 

  34. C. Qi, P. Liu, Eur. Polym. J. 42, 2931 (2006)

    Article  Google Scholar 

  35. S. Sundararajan, A.B. Samui, P.S. Kulkarni, Thermochim. Acta 650, 114 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology Plan of Xi’an City (No. 22GXFW0003) Key Research and Development Program of Xianyang City (No. 2021ZDYF-GY-0037), and National Natural Science Foundation of China (No. 21978162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Zhou.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Liu, G., Niu, Z. et al. Hyperbranched Waterborne Polyurethane Solid–Solid Phase Change Material for Thermal Energy Storage in Thermal Management Fabric. Fibers Polym 24, 413–422 (2023). https://doi.org/10.1007/s12221-023-00081-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00081-3

Keywords

Navigation