Skip to main content
Log in

Generation of Flexible Multifunctional Electronic Textile Displaying Appropriate Fastness Properties Utilizing Single-Stage Inkjet Printing onto Cotton Fabric Pre-treated with PVC

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Electrically conductive printed textiles are gaining increasing interest and demand worldwide. Cotton fabric's porosity and high surface roughness avoid electrically conductive printed patterns on the fabrics. This paper reports the in-situ solution deposition of silver free particles inkjet ink via an aqueous single-stage inkjet printing process, which improved electrical conductivity and fastness properties with a new approach. The cotton fabrics were pre-treated with different polyvinylchloride (PVC) solutions prepared in various solvents such as tetrahydrofuran (THF) and dimethylformamide (DMF) that differed in boiling temperature. Afterward, PVC-pre-treated fabrics were printed through the HP Deskjet inkjet printer. The results showed that the PVC-pre-treatment of cotton fabrics significantly improved the electrical conductivity (< 2 Ω/□), antibacterial activity, thermal management, droplets repellency, adhesion, abrasion, and washing fastness properties, as well as flexibility properties. The solvent type in PVC solutions affects the physical properties of the pre-treated cotton fabric. The comparison in rheological behavior of PVC solutions in DMF and THF at different temperatures displayed the significant difference in viscosity at gel-point for THF and DMF solution. THF solution with higher viscosity cannot diffuse more into porosities of cotton fabric than the DMF solution, which affects the silver nanoparticles' average crystal size and the final electrical conductivity of the printed fabric. It is the first time using an economical polymer layer on cotton fabrics to provide robust electronic printed patterns by single-stage inkjet printing. The results confirm that the flexible electronic printed fabric can be used as a multifunctional electronic textile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. F.C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394 (2009)

    CAS  Google Scholar 

  2. S. Ummartyotin, J. Juntaro, C. Wu, M. Sain, H. Manuspiya, J. Nanomater. 2011, 606714 (2011)

    Google Scholar 

  3. M. Hengge, K. Livanov, N. Zamoshchik, F. Hermerschmidt, E.J. List-Kratochvil, Flex. Print. Electron. 6, 015009 (2021)

    CAS  Google Scholar 

  4. M. Jung, J. Kim, J. Noh, N. Lim, C. Lim, G. Lee, J. Kim, H. Kang, K. Jung, A.D. Leonard, IEEE Trans. Electron Devices 57, 571 (2010)

    CAS  Google Scholar 

  5. P. Fathi, S. Shrestha, R. Yerramilli, N. Karmakar, S. Bhattacharya, Flex. Print. Electron. 6, 025009 (2021)

    CAS  Google Scholar 

  6. Y. Htwe, M. Mariatti, J. Taiwan Inst. Chem. Eng. 125, 402 (2021)

    CAS  Google Scholar 

  7. I.J. Fernandes, A.F. Aroche, A. Schuck, P. Lamberty, C.R. Peter, W. Hasenkamp, T.L. Rocha, Sci. Rep. 10, 8828 (2020)

    Google Scholar 

  8. T. Truong, J.-S. Kim, J. Kim, Fibers Polym. 22, 2900 (2021)

    CAS  Google Scholar 

  9. J.O. Akindoyo, N.H. Ismail, M. Mariatti, J. Mater. Sci.: Mater. Electron. 32, 12648 (2021)

    CAS  Google Scholar 

  10. Q. Liew, N.A. Rashid, H. Lee, H. Hawari, M.M. Khir, J. Phys. Conf. Ser. 1878, 012059 (2021)

    CAS  Google Scholar 

  11. S.H. Chen, S.T. Pua, Z.W. Zhong, X.C. Shan, J. Mater. Appl. 9(2), 79 (2020)

    Google Scholar 

  12. M. Jo, J. Lee, S. Kim, G. Cho, T.-M. Lee, and C. Lee, Int. J. Precis. Eng. Manuf. - Green Technol., 8, 817 (2021).

  13. M. Gajadhur, M. Regulska, Dyes Pigm. 178, 108381 (2020)

    CAS  Google Scholar 

  14. Z. Zhong, J. Ee, S. Chen, X. Shan, Mater. Manuf. Process. 35, 564 (2020)

    CAS  Google Scholar 

  15. H. Hong, H. Jiyong, K.-S. Moon, X. Yan, C.-P. Wong, J. Mater. Sci. Technol. 67, 145 (2021)

    CAS  Google Scholar 

  16. L. Liu, Z. Shen, X. Zhang, H. Ma, J. Colloid Interface Sci. 582, 12 (2021)

    CAS  PubMed  Google Scholar 

  17. Y. Aleeva, B. Pignataro, J. Mater. Chem. C 2, 6436 (2014)

    CAS  Google Scholar 

  18. S.H. Ko, J. Chung, H. Pan, C.P. Grigoropoulos, D. Poulikakos, Sens. Actuators A: Phys. 134, 161 (2007)

    CAS  Google Scholar 

  19. B.J. de Gans, P.C. Duineveld, U.S. Schubert, Adv. Mater. 16, 203 (2004)

    Google Scholar 

  20. S. Magdassi, M. Grouchko, O. Berezin, A. Kamyshny, ACS Nano 4, 1943 (2010)

    CAS  PubMed  Google Scholar 

  21. K.-S. Chou, C.-Y. Ren, Mater. Chem. Phys. 64, 241 (2000)

    CAS  Google Scholar 

  22. S. Bidoki, D. Lewis, M. Clark, A. Vakorov, P. Millner, D. McGorman, J. Micromech. Microeng. 17, 967 (2007)

    CAS  Google Scholar 

  23. S.M. Bidoki, J. Nouri, A. Heidari, J. Micromech. Microeng. 20, 055023 (2010)

    Google Scholar 

  24. M. Montazer, Z.K. Nia, Mater. Sci. Eng. C 56, 341 (2015)

    CAS  Google Scholar 

  25. M. Vaseem, G. McKerricher, A. Shamim, A.C.S. Appl, Mater. Interfaces 8, 177 (2016)

    CAS  Google Scholar 

  26. J. Li, X. Zhang, X. Liu, Q. Liang, G. Liao, Z. Tang, T. Shi, Mater. Des. 185, 108255 (2020)

    CAS  Google Scholar 

  27. X. Nie, H. Wang, J. Zou, Appl. Surf. Sci. 261, 554 (2012)

    CAS  Google Scholar 

  28. W. Xu, T. Wang, Langmuir 33, 82 (2017)

    CAS  PubMed  Google Scholar 

  29. Y. Cai, X. Yao, X. Piao, Z. Zhang, E. Nie, Z. Sun, Chem. Phys. Lett. 737, 136857 (2019)

    CAS  Google Scholar 

  30. S.B. Walker, J.A. Lewis, J. Am. Chem. Soc. 134, 1419 (2012)

    CAS  PubMed  Google Scholar 

  31. Z. Stempien, E. Rybicki, T. Rybicki, J. Lesnikowski, Sens. Actuators B: Chem. 224, 714 (2016)

    CAS  Google Scholar 

  32. J. Lessing, A.C. Glavan, S.B. Walker, C. Keplinger, J.A. Lewis, G.M. Whitesides, Adv. Mater. 26, 4677 (2014)

    CAS  PubMed  Google Scholar 

  33. H. Xu, X. Tang, H. Sun, H. Zhao, and M. Li, in 18th International Conference on Electronic Packaging Technology (ICEPT), pp.1470–1473, Harbin, China, August 16–19, 2017.

  34. E.R. Saad, N.M. Hafez, Int. Des. J. 4, 33 (2014)

    Google Scholar 

  35. M. Lewin, Handbook of Fiber Chemistry, 3rd edn. (Woodhead Publishing Limited, CRC Press, New York, 2006)

    Google Scholar 

  36. P. J. Wakelyn, N. R. Bertoniere, A. D. French, D. P. Thibodeaux, B. A. Triplett, M.-A. Rousselle, W. R. Goynes Jr, J. V. Edwards, L. Hunter, G. R. Gamble and D. D. McAlister, "Cotton fiber chemistry and technology", CRC Press, 2006.

  37. P. Li, B. Wang, Y.-Y. Liu, Y.-J. Xu, Z.-M. Jiang, C.-H. Dong, L. Zhang, Y. Liu, P. Zhu, Carbohydr. Polym. 237, 116173 (2020)

    CAS  PubMed  Google Scholar 

  38. N. Litim, A. Baffoun, F. Khoffi, M. Hamdaoui, S. Ben Abdessalem, and B. Durand, J. Text. Inst., 108, 1863 (2017).

  39. K. Jeyasubramanian, G. Hikku, A. Preethi, V. Benitha, N. Selvakumar, J. Ind. Eng. Chem. 37, 180 (2016)

    CAS  Google Scholar 

  40. A.A. Mukthy, A.Y.M.A. Azim, Int. J. Sci. Eng. Technol. 3(8), 983 (2014)

    Google Scholar 

  41. A. K. Sen, "Coated Textiles: Principles and Applications", 2nd ed., CRC Press, 2007.

  42. S. Bidoki, R. Wittlinger, J. Cleaner Prod. 18, 219 (2010)

    CAS  Google Scholar 

  43. H. Barani, A. Miri, H. Sheibani, Cellulose 28, 6629 (2021)

    CAS  Google Scholar 

  44. V. Trovato, E. Teblum, Y. Kostikov, A. Pedrana, V. Re, G.D. Nessim, G. Rosace, J. Colloid Interface Sci. 586, 120 (2021)

    CAS  PubMed  Google Scholar 

  45. Z. Kang, Y. He, J. Sang, H. Hirahara, D. Chen, Adv. Mater. Interfaces 8(17), 2100651 (2021)

    CAS  Google Scholar 

  46. S. Liu, M. Hu, J. Yang, J. Mater. Chem. C 4, 1320 (2016)

    CAS  Google Scholar 

  47. X. Tang, K. Wu, X. Qi, H.-J. Kwon, R. Wang, Z. Li, H. Ye, J. Hong, H.H. Choi, H. Kong, N.-S. Lee, S. Lim, Y.J. Jeong, S.H. Kim, A.C.S. Appl, Nano Mater. 5(4), 4801 (2022)

    CAS  Google Scholar 

  48. A. Boumeganane, A. Nadi, O. Cherkaoui, M. Tahiri, Mater. Today: Proc. 58(4), 1235 (2022)

    CAS  Google Scholar 

  49. ASTM D5035-11: Standard Test Method for Breaking Force and Elongation of Textile Fabrics (Strip Method), 2019.

  50. ISO 2313-1:2021: Determination of the recovery from creasing of a folded specimen of fabric by measuring the angle of recovery—Part 1: Method of the horizontally folded specimen, 2011.

  51. L.B. Valdes, Proc. IRE 42, 420 (1954)

    Google Scholar 

  52. M. Naftaly, S. Das, J. Gallop, K. Pan, F. Alkhalil, D. Kariyapperuma, S. Constant, C. Ramsdale, L. Hao, Electronics 10, 960 (2021)

    Google Scholar 

  53. F. Smits, Bell Syst. Tech. J. 37, 711 (1958)

    Google Scholar 

  54. AATCC 61: Test Method for Colorfastness to Laundering: Accelerated, 2020.

  55. ASTM F2497-05: Standard practice for abrasion and scuff resistance of inkjet media by the sutherland rub tester standard, 2005.

  56. ASTM F1842-15: Standard Test Method for Determining Ink or Coating Adhesion on Flexible Substrates for a Membrane Switch or Printed Electronic Device, 2016.

  57. H. Launay, C.M. Hansen, K. Almdal, Carbon 45, 2859 (2007)

    CAS  Google Scholar 

  58. V. Gutmann, Electrochim. Acta 21, 661 (1976)

    CAS  Google Scholar 

  59. C.G. Swain, M.S. Swain, A.L. Powell, S. Alunni, J. Am. Chem. Soc. 105, 502 (1983)

    CAS  Google Scholar 

  60. R.W. Taft, J.-L.M. Abboud, M.J. Kamlet, M.H. Abraham, J. Solution Chem. 14, 153 (1985)

    CAS  Google Scholar 

  61. C. Reichardt, Chem. Rev. 94, 2319 (1994)

    CAS  Google Scholar 

  62. T. Kameda, M. Ono, G. Grause, T. Mizoguchi, T. Yoshioka, Polym. Degrad. Stab. 94, 107 (2009)

    CAS  Google Scholar 

  63. M.-C. Michalski, J. Hardy, B.J. Saramago, J. Colloid Interface Sci. 208, 319 (1998)

    CAS  PubMed  Google Scholar 

  64. G. Grause, S. Hirahashi, H. Toyoda, T. Kameda, T. Yoshioka, J. Mater. Cycles Waste Manag. 19, 612 (2017)

    CAS  Google Scholar 

  65. K. H. Lee, H. Y. Kim, Y. M. La, D. R. Lee, and N. H. Sung, J. Polym. Sci., Part B: Polym. Phys., 40, 2259 (2002).

  66. R. Witzel, R. Burnham, J. Onley, J. Opt. Soc. Am. 63, 615 (1973)

    CAS  PubMed  Google Scholar 

  67. G. Wyszecki, G. Fielder, J. Opt. Soc. Am. 61, 1501 (1971)

    CAS  PubMed  Google Scholar 

  68. W.D. Wright, Trans. Opt. Soc. 30, 141 (1929)

    Google Scholar 

  69. M.R. Nair, G.V. Thomas, M.G. Nair, Polym. Degrad. Stab. 92, 189 (2007)

    CAS  Google Scholar 

  70. K.F. Babu, R. Senthilkumar, M. Noel, M.A. Kulandainathan, Synth. Met. 159, 1353 (2009)

    CAS  Google Scholar 

  71. J. Wypych, Polyvinyl chloride degradation (University of Ife, Ile-Ife, Nigeria, 1985)

    Google Scholar 

  72. M. Pandey, G.M. Joshi, A. Mukherjee, P. Thomas, Polym. Int. 65, 1098 (2016)

    CAS  Google Scholar 

  73. V. Solodovnichenko, V. Polyboyarov, A. Zhdanok, A. Arbuzov, E. Zapevalova, Y.G. Kryazhev, V. Likholobov, Procedia Eng. 152, 747 (2016)

    CAS  Google Scholar 

  74. G. Gururajan, C.B. Giller, C.M. Snively, D.B. Chase, J.F. Rabolt, Appl. Spectrosc. 65, 858 (2011)

    CAS  PubMed  Google Scholar 

  75. J. Izdebska, S. Thomas, Printing on polymers: fundamentals and applications (Elsevier, Amsterdam, 2016)

    Google Scholar 

  76. S. Magdassi, The chemistry of inkjet inks (World Scientific Pub. Co., Singapore, 2010)

    Google Scholar 

  77. Y. Cai, X. Piao, W. Gao, Z. Zhang, E. Nie, Z. Sun, RSC Adv. 7, 34041 (2017)

    CAS  Google Scholar 

  78. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Prog. Mater. Sci. 61, 1 (2014)

    Google Scholar 

  79. A.D. French, Cellulose 21, 885 (2014)

    CAS  Google Scholar 

  80. N. Biswas, S. Kapoor, H.S. Mahal, T. Mukherjee, Chem. Phys. Lett. 444, 338 (2007)

    CAS  Google Scholar 

  81. X. Hou, Y. Fang, J. Colloid Interface Sci. 316, 19 (2007)

    CAS  PubMed  Google Scholar 

  82. I. Martina, R. Wiesinger, D. Jembrih-Simbürger, M. Schreiner, e-Preserv Sci. 9, 1 (2012)

    CAS  Google Scholar 

  83. ISO 20743:2013(en): Determination of antibacterial activity of textile products, 2013.

  84. M.E. Łysakowska, A. Ciebiada-Adamiec, L. Klimek, M. Sienkiewicz, Burns 41, 364 (2015)

    PubMed  Google Scholar 

  85. N. Durán, M. Durán, M.B. De Jesus, A.B. Seabra, W.J. Fávaro, G. Nakazato, Nanomed. Nanotechnol. Biol. Med. 12, 789 (2016)

    Google Scholar 

  86. G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli, M. Galdiero, Molecules 20, 8856 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  87. W.-R. Li, X.-B. Xie, Q.-S. Shi, H.-Y. Zeng, O.-Y. You-Sheng, Y.-B. Chen, Appl. Microbiol. Biotechnol. 85, 1115 (2010)

    CAS  PubMed  Google Scholar 

  88. W.-R. Li, X.-B. Xie, Q.-S. Shi, S.-S. Duan, Y.-S. Ouyang, Y.-B. Chen, Biometals 24, 135 (2011)

    CAS  PubMed  Google Scholar 

  89. J. Ren, C. Wang, X. Zhang, T. Carey, K. Chen, Y. Yin, F. Torrisi, Carbon 111, 622 (2017)

    CAS  Google Scholar 

  90. G.B. Tseghai, B. Malengier, K.A. Fante, A.B. Nigusse, L. Van Langenhove, Sensors 20, 1742 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  91. F.A. Alamer, N.M. Badawi, O. Alsalmi, J. Electron. Mater. 49, 6582 (2020)

    Google Scholar 

  92. N. Karim, S. Afroj, A. Malandraki, S. Butterworth, C. Beach, M. Rigout, K.S. Novoselov, A.J. Casson, S.G. Yeates, J. Mater. Chem. C. 5, 11640 (2017)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atasheh Soleimani-Gorgani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest (financial or non-financial).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goudarzi, A., Soleimani-Gorgani, A. & Avinc, O. Generation of Flexible Multifunctional Electronic Textile Displaying Appropriate Fastness Properties Utilizing Single-Stage Inkjet Printing onto Cotton Fabric Pre-treated with PVC. Fibers Polym 24, 555–573 (2023). https://doi.org/10.1007/s12221-023-00067-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00067-1

Keywords

Navigation