Skip to main content
Log in

Hybrid Corona–Dielectric Barrier Discharge for Permethrin Polymerisation on Polyamide Fabric at Atmospheric Pressure

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This work presents permethrin (15%)-based monomers polymerisation in polyamide fabrics using hybrid corona–dielectric barrier discharge (DBD) to potentiate insect–parasite repellency functionalities in polyamide fabrics. First of all, the electric characterisation of the discharge was made using the Lissajous figure method for determining the plasma dosage (2841 W min m−2). Before the polymerisation process, the polyamide fabric was activated by DBD discharge, operating at 23 kHz and voltage amplitude of 12.5 kV in atmospheric pressure. After that, the polymerisation process is initiated by injecting permethrin into the system, maintaining the operational parameters used in the activation process. The non-activated and activated polyamide fabrics measured the static and dynamic contact angle, showing a variation from 120° (non-activated) to 34° (immediately after plasma activation). The chemical structure of synthesised permethrin was evaluated by Fourier transformed infrared (FTIR) spectroscopy to confirm the polymerisation (deposition) of permethrin on the fabric surface; it is possible to observe the 648 cm−1 bands that are associated with asymmetric vibration of the C–Cl bonds, but most evident change occurs at 1045 cm−1, which is associated with cyclopropyl group vibrations. Field emission scanning electron microscopy (FESEM) analysis was used to evaluate the possible degradation of the fabric surface when exposed to plasma activation and the homogeneity of the permethrin coating in the fibres after the polymerisation. The energy dispersive spectrometer (EDS) was used to confirm the polymerisation and the distribution of the permethrin in the fabric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The authors declare that [the/all other] data supporting the findings of this study are available within the article.

References

  1. S. Luo, W.J. Van Ooij, J. Adhes. Sci. Technol. 16, 1715 (2002)

    CAS  Google Scholar 

  2. M. Kuhr, A. Synytska, C. Bellmann, D. Aibibu, C. Cherif, J. Ind. Text. 46, 643 (2016)

    CAS  Google Scholar 

  3. N. Carneiro, A.P. Souto, C. Nogueira, A. Madureira, C. Krebs, S. Cooper, J. Nat. Fibers 2, 53 (2006)

    Google Scholar 

  4. R. Morent, N. De Geyter, J. Verschuren, K. De Clerck, P. Kiekens, C. Leys, Surf. Coat. Technol. 202, 3427 (2008)

    CAS  Google Scholar 

  5. Y. Javadzadeh, S. Hamedeyazdan, IntechOpen 1, 303 (2014)

    Google Scholar 

  6. S. Singh, C. Prakash, H. Wang, X. Yu, S. Ramakrishna, Eur. Polym. J. 118, 561 (2019)

    CAS  Google Scholar 

  7. R. Zhongfu, T. Xiaoliang, W. Hong’en, Q. Gao, J. Ind. Text. 37, 43 (2007)

    Google Scholar 

  8. M.J. Tsafack, J. Levalois-Grützmacher, Surf. Coat. Technol. 200, 3503 (2006)

    CAS  Google Scholar 

  9. A. Morro, F. Catalina, J.L. Pablos, T. Corrales, I. Marin, C. Abrusci, Eur. Polym. J. 94, 405 (2017)

    CAS  Google Scholar 

  10. M. Laroussi, Plasma Process. Polym. 2, 391 (2005)

    CAS  Google Scholar 

  11. C. Hoffmann, C. Berganza, J. Zhang, Med. Gas Res. 3, 1 (2013)

    Google Scholar 

  12. R. Laurita, D. Barbieri, M. Gherardi, V. Colombo, P. Lukes, Clin. Plasma Med. 3, 53 (2015)

    Google Scholar 

  13. P. Cools, S. Van Vrekhem, N. De Geyter, R. Morent, Thin Solid Films 572, 251 (2014)

    CAS  Google Scholar 

  14. S. Guimond, B. Hanselmann, M. Amberg, D. Hegemann, Pure Appl. Chem. 82, 1239 (2010)

    CAS  Google Scholar 

  15. F.R. Oliveira, F. Steffens, P.S.B. De Holanda, J.H.O. Do Nascimento, K.N. Matsui, A.P. Souto, Mater. Res. 20, 60 (2017)

    Google Scholar 

  16. F. Gasi, G. Petraconi, E. Bittencourt, S.R. Lourenço, A.H.R. Castro, F.D.S. Miranda, A.M. Essiptchouk, L. Nascimento, A. Petraconi, M.A. Fraga, R.S. Pessoa, Mater. Res. 23, 1 (2020)

    Google Scholar 

  17. M. Saleem, M.Y. Naz, B. Shoukat, S. Shukrullah, Z. Hussain, Mater. Today Proc. 47, S74 (2020)

    Google Scholar 

  18. J. Trejbal, V. Nežerka, M. Somr, J. Fládr, Š Potocký, A. Artemenko, P. Tesárek, Cem. Concr. Compos. 89, 205 (2018)

    CAS  Google Scholar 

  19. A. Sparavigna, arXiv 1, 1 (2008)

    Google Scholar 

  20. A.P. Souto, F.R. Oliveira, N. Carneiro, IntechOpen 1, 241 (2016)

    Google Scholar 

  21. C.W. Kan, C.W.M. Yuen, Surf. Coat. Technol. 228, S607 (2013)

    CAS  Google Scholar 

  22. D. Merche, N. Vandencasteele, F. Reniers, Thin Solid Films 520, 4219 (2012)

    CAS  Google Scholar 

  23. J. Friedrich, Plasma Process. Polym. 8, 783 (2011)

    CAS  Google Scholar 

  24. L. Vinet, A. Zhedanov, A.C.S. Appl, Mater. Interfaces 10, 35316 (2010)

    Google Scholar 

  25. H. Fathy Khater, A.M. Selim, G.A. Abouelella, N.A. Abouelella, K. Murugan, N.P. Vaz, M. Govindarajan, IntechOpen 1, 1 (2019)

    Google Scholar 

  26. J.H. Diaz, Wilderness Environ. Med. 27, 153 (2016)

    PubMed  Google Scholar 

  27. M. Ardanuy, M. Faccini, D. Amantia, L. Aubouy, G. Borja, Surf. Coat. Technol. 239, 132 (2014)

    CAS  Google Scholar 

  28. M. Kim, S.H. Seo, H.D. Ghim, Macromol. Res. 22, 1348 (2014)

    CAS  Google Scholar 

  29. C. Xiang, N.R. Etrick, M.W. Frey, E.J. Norris, J.R. Coats, Polymers 12, 2196 (2020)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. M.K. Faulde, W.M. Uedelhoven, R.G. Robbins, J. Med. Entomol. 40, 935 (2003)

    CAS  PubMed  Google Scholar 

  31. M. Faulde, W. Uedelhoven, Int. J. Med. Microbiol. 296, 225 (2006)

    PubMed  Google Scholar 

  32. W. Li, B. Lu, A. Sheng, F. Yang, Z. Wang, J. Mol. Struct. 981, 194 (2010)

    CAS  Google Scholar 

  33. K. Büchel, J. Bendin, A. Gharbi, S. Rahlenbeck, H. Dautel, Ticks Tick. Borne. Dis. 6, 494 (2015)

    PubMed  Google Scholar 

  34. S.R. Evans, G.W. Korch Jr., M.A. Lawson, J. Med. Entomol. 27, 829 (1990)

    CAS  PubMed  Google Scholar 

  35. J. Etang, M. Chouaibou, J.C. Toto, O. Faye, L. Manga, A. Samè-Ekobo, P. Awono-Ambene, F. Simard, Trans. R. Soc. Trop. Med. Hyg. 101, 881 (2007)

    PubMed  Google Scholar 

  36. G.A. Mount, E.L. Snoddy, J. Econ. Entomol. 76, 529 (1983)

    CAS  PubMed  Google Scholar 

  37. E.M. Liston, L. Martinu, M.R. Wertheimer, J. Adhes. Sci. Technol. 7, 1091 (1993)

    CAS  Google Scholar 

  38. D. Hegemann, H. Brunner, C. Oehr, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 208, 281 (2003)

    CAS  Google Scholar 

  39. D. Mei, X. Zhu, Y.L. He, J.D. Yan, X. Tu, Plasma Sources Sci. Technol. 24, 1 (2015)

    Google Scholar 

  40. M. Porubská, O. Szöllös, A. Kóňová, I. Janigová, M. Jašková, K. Jomová, I. Chodák, Polym. Degrad. Stab. 97, 523 (2012)

    Google Scholar 

  41. M. Preuss, F. Bechstedt, Phys. Rev. B Condens. Matter Mater. Phys. 73, 155413 (2016)

    Google Scholar 

  42. Z.S. Silva, S.B. Botta, P.A. Ana, C.M. França, K.P.S. Fernandes, R.A. Mesquita-Ferrari, A. Deana, S.K. Bussadori, Sci. Rep. 5, 1 (2015)

    Google Scholar 

  43. R. Lindenmaier, N.K. Scharko, R.G. Tonkyn, K.T. Nguyen, S.D. Williams, T.J. Johnson, J. Mol. Struct. 1149, 332 (2017)

    CAS  Google Scholar 

  44. B. Jović, M. Panić, N. Radnović, K. Živojević, M. Mladenović, V. Crnojević, N. Knežević, J. Mol. Struct. 1219, 1 (2020)

    Google Scholar 

  45. X. Sun, E. DenHartog, X. Zhang, M. McCord, Appl. Surf. Sci. 453, 182 (2018)

    CAS  Google Scholar 

  46. K. Vinisha Rani, B. Sarma, A. Sarma, Diam. Relat. Mater. 84, 77 (2018)

    CAS  Google Scholar 

  47. K. Fang, C. Zhang, Appl. Surf. Sci. 255, 7561 (2009)

    CAS  Google Scholar 

  48. H.J. Jang, E.Y. Jung, T. Parsons, H.S. Tae, C.S. Park, Polymers 13, 1 (2021)

    Google Scholar 

  49. D. Thiry, S. Konstantinidis, J. Cornil, R. Snyders, Thin Solid Films 606, 19 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

Thanks to CNPq, National Council for Scientific and Technological Development, for supporting the development of scientific activity through the Institutional Program of Scientific Initiation Scholarships—PIBIC and the Coordination of Superior Level Staff Improvement (CAPES) by National Postdoctoral Program/Capes/ITA (Grant n° 8887.360983/2019-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe Miranda.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petraconi, A., Miranda, F., Prado, E. et al. Hybrid Corona–Dielectric Barrier Discharge for Permethrin Polymerisation on Polyamide Fabric at Atmospheric Pressure. Fibers Polym 24, 373–382 (2023). https://doi.org/10.1007/s12221-023-00058-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00058-2

Keywords

Navigation