Skip to main content
Log in

Investigation of Mechanical Properties and Failure Behavior of CFRP Filament-Wound Composites Using an Acoustic Emission-Based Methodology and Numerical Simulation

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Filament wound composites have a continuous structure, and to improve the mechanical behavior of these structures, it is necessary to identify the damage mechanisms. The focus of this study is to investigate the mechanical properties and failure analyses of filament-wound carbon/epoxy composite samples under three-point bending using the acoustic emission technique. To investigate this, first, using a filament winding machine, composite plates and composite structures with a square cross section were fabricated. Afterward, composite specimens were tested and most independent elastic constants, strength properties, and shear properties were obtained. Then, a three-point bending testing of filament-wound composite specimens was performed, and to identify the damage mechanisms the analysis of acoustic emission signals recorded during loading was also implemented. The acoustic emission signals of composite samples were classified using hierarchical and wavelet transform methods and the evolution of different damage mechanisms was investigated. Eventually, composite samples were simulated in ABAQUS software, and to consider the damage mechanisms, the continuum damage mechanics model was considered as a user material subroutine in simulation. The experimental results showed that the received acoustic emission signals matched very well with the mechanical behavior, and the acoustic response of the composite samples to the loading includes three regions. The amplitude range of the first, second, and third clusters was obtained between 35–74, 51–100, and 55–84 dB, respectively. Finally, in the clustering method, the frequency range of fiber/matrix debonding and fiber breakage were characterized between 200 and 250 and over 380 kHz, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

The datasets supporting the conclusions of this study are included within the article.

References

  1. Q. Zhou, Q. Ma, T. Zhou, X.J.F. Gan, Fiber. Polym. 22, 1761 (2021)

    CAS  Google Scholar 

  2. N.S. Ha, G. Lu, Thin-Walled Struct. 157, 106995 (2020)

    Google Scholar 

  3. A.A. Krikanov, Compos. Struct. 48, 119 (2000)

    Google Scholar 

  4. J.H.S. Almeida, H. Faria, A.T. Marques, S.C. Amico, J. Reinf. Plast. Compos. 33, 2274 (2014)

    CAS  Google Scholar 

  5. S.D. Pandita, M.S. Irfan, V.R. Machavaram, N. Shotton-Gale, R.S. Mahendran, C.F. Wait, M.A. Paget, D. Harris, C. Leek, G.F. Fernando, J. Compos. Mater. 47, 379 (2012)

    Google Scholar 

  6. A. De Morais, J. Silva, A. Marques, P. De Castro, Appl. Compos. Mater. 9, 117 (2002)

    Google Scholar 

  7. F. Ozdil, L. Carlsson, J. Compos. Mater. 34, 398 (2000)

    Google Scholar 

  8. F. Ozdil, L. Carlsson, X. Li, J. Compos. Mater. 34, 274 (2000)

    Google Scholar 

  9. F. Ozdil, L. Carlsson, P. Davies, Compos. Sci. Technol. 58, 1929 (1998)

    CAS  Google Scholar 

  10. A. Supian, S. Sapuan, M. Jawaid, M. Zuhri, R. Ilyas, A. Syamsir, Fiber. Polym. 23, 222 (2022)

    CAS  Google Scholar 

  11. M. Azeem, H.H. Yan, M. Kumar, P. Stabla, M. Smolnicki, L. Gemi, R. Khan, T. Ahmed, Q. Man, M.R. Sadique, A.A. Mokhar, M. Mostafa, J. Energy Storage. 49, 103468 (2022)

    Google Scholar 

  12. S. Braiek, A. Ben Khalifa, R. Zitoune, M. Zidi, M. Salem, Polym. Test. 91, 106815 (2020)

    CAS  Google Scholar 

  13. K.C. Shen, G. Pan, Compos. Struct. 276, 114534 (2021)

    CAS  Google Scholar 

  14. J.H.S. Almeida, S.D. Souza, E.C. Botelho, S.C. Amico, J Mater Sci. 51, 4697 (2016)

    CAS  Google Scholar 

  15. M.L. Ribeiro, V. Tita, D. Vandepitte, Compos. Struct. 94, 635 (2012)

    Google Scholar 

  16. C. McGregor, N. Zobeiry, R. Vaziri, A. Poursartip, X. Xiao, Compos. Part A. Appl Sci Manuf. 95, 208 (2017)

    CAS  Google Scholar 

  17. D. Shi, X. Xiao, Compos Struct. 185, 774 (2018)

    Google Scholar 

  18. G. Fang, P. Qu, Z. Cao, F. Shi, Fiber. Polym. 23, 1440 (2022)

    Google Scholar 

  19. Y. Yang, X. Liu, Y.-Q. Wang, H. Gao, R. Li, Y. Bao, Compos. Sci. Technol. 151, 85 (2017)

    CAS  Google Scholar 

  20. N. Akkus, G. Garip, Int. J. Adv. Manuf. Technol. 91, 3583 (2017)

    Google Scholar 

  21. T. Topkaya, Fiber. Polym. 22, 1397 (2021)

    CAS  Google Scholar 

  22. M. Saeedifar, D. Zarouchas, Compos. Part B. Eng. 195, 108039 (2020)

    CAS  Google Scholar 

  23. D. Jung, Y. Mizutani, A. Todoroki, W. Na, Fiber. Polym. 22, 1940 (2021)

    CAS  Google Scholar 

  24. M. Fotouhi, M. Jalalvand, M. Saeedifar, B. Xiao, M.R. Wisnom, Compos. Struct. 247, 112444 (2020)

    Google Scholar 

  25. D.B. Lee, Fiber. Polym. 5, 259 (2004)

    CAS  Google Scholar 

  26. S. Alimirzaei, M.A. Najafabadi, A. Nikbakht, L. Pahlavan, Int. J. Damage Mech. 31, 1230 (2022)

    CAS  Google Scholar 

  27. A. Huijer, C. Kassapoglou, L. Pahlavan, Sensorse 21, 6926 (2021)

    CAS  Google Scholar 

  28. S. Qiu, C.A. Fuentes, D. Zhang, A.W. Van Vuure, D. Seveno, Langmuir 32, 9697 (2016)

    CAS  PubMed  Google Scholar 

  29. ASTM D3518, D3518M-18, Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a ±45° Laminate (ASTM International, West Conshohocken, 2018)

    Google Scholar 

  30. ASTM D2584, Standard Test Method for Ignition Loss of Cured Reinforced Resins (American Society for Testing and Materials, Philadelphia, 1968)

    Google Scholar 

  31. ASTM D3039, D3039M-17, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials (ASTM International, West Conshohocken, 2014)

    Google Scholar 

  32. ASTM D3410, D3410M-16e1, Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading (ASTM International, West Conshohocken, 2021)

    Google Scholar 

  33. ASTM D790, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials (STM International, West Conshohocken, 2002)

    Google Scholar 

  34. J.H.S. Almeida Jr., M.L. Tonatto, M.L. Ribeiro, V. Tita, S.C. Amico, Compos. Part B Eng. 149, 227 (2018)

    CAS  Google Scholar 

  35. M.L. Ribeiro, D. Vandepitte, V. Tita, Appl. Compos. Mater. 20, 975 (2013)

    Google Scholar 

  36. Z. Hashin, J. Appl. Mech. 47, 329 (1980)

    Google Scholar 

  37. C.T. Herakovich, Mechanics of Fibrous Composites (Wiley, 1997)

    Google Scholar 

  38. A. Matzenmiller, J. Lubliner, R. Taylor, Mech. Mater. 20, 125 (1995)

    Google Scholar 

  39. P. Ladeveze, Comput. Struct. 44, 79 (1992)

    Google Scholar 

  40. J.H.S. Almeida Jr., M.L. Ribeiro, V. Tita, S.C. Amico, Compos. Struct. 160, 204 (2017)

    Google Scholar 

  41. L. Kachanov, Introduction to Continuum Damage Mechanics (Springer Science & Business Media, 1986)

    Google Scholar 

  42. R.M. Jones, Mechanics of Composite Materials (CRC Press, 2018)

    Google Scholar 

  43. E.J. Barbero, Introduction to Composite Materials Design (CRC Press, 2010)

    Google Scholar 

  44. J.H.S. Almeida Jr., M.L. Ribeiro, V. Tita, S.C. Amico, Compos. Struct. 178, 20 (2017)

    Google Scholar 

  45. P. Ladeveze, E. LeDantec, Compos. Sci. Technol. 43, 257 (1992)

    CAS  Google Scholar 

  46. O. Allix, P. Ladeveze, E. Vittecoq, Compos. Sci. Technol. 51, 35 (1994)

    CAS  Google Scholar 

  47. A.B. Davijani, M. Hajikhani, M. Ahmadi, Mater. Des. 32, 3059 (2011)

    Google Scholar 

  48. A. Ghosh, A. Majumdar, S. Das, Fiber. Polym. 13, 809 (2012)

    Google Scholar 

  49. H.Y. Chou, A.P. Mouritz, M. Bannister, A.R. Bunsell, Compos Part A. Appl. Sci. Manuf. 70, 111 (2015)

    CAS  Google Scholar 

  50. H.Y. Chou, Damage Analysis of Composite Pressure Vessels Using Acoustic Emission Monitoring (RMIT University, 2012)

    Google Scholar 

  51. P. Nimdum, J. Renard, Use of acoustic emission to discriminate damage modes in carbon fibre reinforced epoxy laminate during tensile and buckling loading, In ECCM 15-15th European Conference on Composite Materials, Venice, pp. 8–p (2012)

  52. K. Soman, Insight into Wavelets: From Theory to Practice (PHI Learning Pvt. Ltd., 2010)

    Google Scholar 

  53. C.K. Chui, Wavelets: A Tutorial in Theory and Applications (Academic Press Professional Inc., 1993)

    Google Scholar 

  54. R. Gutkin, C.J. Green, S. Vangrattanachai, S.T. Pinho, P. Robinson, P.T. Curtis, Mech. Syst. Signal Process. 25, 1393 (2011)

    Google Scholar 

  55. M. NazmdarShahri, J. Yousefi, M. Fotouhi, M. Ahmadi Najfabadi, J. Compos. Mater. 50, 1897 (2015)

    Google Scholar 

  56. H. Heidary, M. Ahmadi, A. Rahimi, G. Minak, J. Compos. Mater. 47, 2897 (2012)

    Google Scholar 

  57. M. Fotouhi, M. Saeedifar, S. Sadeghi, M. Ahmadi Najafabadi, G. Minak, Struct. Health Monit. 14, 265 (2015)

    Google Scholar 

  58. M. Saeedifar, M.A. Najafabadi, D. Zarouchas, H.H. Toudeshky, M. Jalalvand, Compos Part B Eng. 144, 206 (2018)

    CAS  Google Scholar 

  59. P.J. de Groot, P.A.M. Wijnen, R.B.F. Janssen, Compos. Sci. Technol. 55, 405 (1995)

    Google Scholar 

  60. R. Boominathan, V. Arumugam, C. Santulli, A. Adhithya Plato Sidharth, R. Anand Sankar, B.T.N. Sridhar, Compos. Part B Eng. 56, 591 (2014)

    CAS  Google Scholar 

  61. W. Zhou, P. Zhang, Y. Zhang, Appl. Sci. 8, 2265 (2018)

    CAS  Google Scholar 

  62. A. Hamed, M. Hamdan, B. Sahari, S.M. Sapuan, ARPN J. Eng. Appl. Sci. 3, 76 (2008)

    Google Scholar 

Download references

Acknowledgements

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Ahmadi Najafabadi.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alimirzaei, S., Ahmadi Najafabadi, M. & Nikbakht, A. Investigation of Mechanical Properties and Failure Behavior of CFRP Filament-Wound Composites Using an Acoustic Emission-Based Methodology and Numerical Simulation. Fibers Polym 24, 693–707 (2023). https://doi.org/10.1007/s12221-023-00050-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00050-w

Keywords

Navigation