Skip to main content
Log in

Improving Indigo Reduction to Leuco-Indigo by Glucose by Means of Direct Electron Transfer and Electron Carriers of Enzymes

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, the reduction of indigo to leuco-indigo by glucose was improved by the use of enzymes, such as glucose oxidase (GOD) and laccase (LAC). In fact, indigo received electrons from the glucose oxidation reaction or the glucose degradation via intermediates resulting in production of leuco-indigo. For indigo reduction involving GOD or LAC, the redox centers of GOD and LAC act as electron carriers from the reduced glucose or transfer electrons directly to indigo molecules. Thus, the turnover rate of electron flow between glucose and indigo by means of these enzymes was increased and improved leuco-indigo production, by about 2–5 times the rate without enzymes. Enzymatically reduced indigo was applied to the dyeing of ramie fabric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availabilty

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. R.S. Blackburn, T. Bechtold, P. John, Color. Technol. 125, 193 (2009)

    Article  CAS  Google Scholar 

  2. A. Roessler, D. Crettenand, Dyes Pigment. 63, 29 (2004)

    Article  CAS  Google Scholar 

  3. S. Komorsky-Lovrie, Chem 482, 222 (2000)

    Google Scholar 

  4. T. Bechtold, E. Burtscher, A. Turcanu, O. Bobleter, J. Electrochem. Soc. 143, 2411 (1996)

    Article  CAS  Google Scholar 

  5. T. Bechtold, E. Burtscher, A. Turcanu, J. Electroanal. Chem. 465, 80 (1999)

    Article  CAS  Google Scholar 

  6. T. Bechtold, E. Burtscher, A. Amann, O. Bobleter, J. Chem. Soc. Faraday Trans. 89, 2451 (1993)

    Article  CAS  Google Scholar 

  7. R.G. Compton, S.J. Perkin, D.P. Gamblin, J. Davis, F. Marken, A.N. Padden, P. John, New J. Chem. 24, 179 (2000)

    Article  CAS  Google Scholar 

  8. C. Jung, D.I. Yoo, Y. Shin, Fiber Polym. 21, 2539 (2020)

    Article  CAS  Google Scholar 

  9. S. Pricelius, C. Held, M. Murkovic, M. Bozic, V. Kokol, A. Cavaco-Paulo, G.M. Guebitz, Appl. Microbiol. Biotechnol. 77, 321 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. M. Božič, S.S. Pricelius, G.M. Guebitz, V. Kokol, Appl. Microbiol. Biotechnol. 85, 563 (2010)

    Article  PubMed  Google Scholar 

  11. R.S. Blakburn, A. Harvey, Environ. Sci. Technol. 38, 4034 (2004)

    Article  Google Scholar 

  12. A. Vuorema, P. John, M. Keskitalo, M.A. Kulandainathan, F. Marken, Dyes Pigment. 76, 542 (2008)

    Article  CAS  Google Scholar 

  13. A. Vuorema, P. John, M. Keskitalo, M.F. Mahon, M.A. Kulandainathand, F. Marken, Phys. Chem. Chem. Phys. 11, 1816 (2009)

    Article  CAS  PubMed  Google Scholar 

  14. L. Saikhao, J. Setthayanond, T. Karpkird, T. Bechtold, P. Suwanruji, J. Clean. Prod. 197, 106 (2018)

    Article  CAS  Google Scholar 

  15. T. Tu, Y. Wang, H. Huang, Y. Wang, X. Jiang, Z. Wang, B. Yao, H. Luo, Food Chem. 281, 163 (2019)

    Article  CAS  PubMed  Google Scholar 

  16. G. Wohlfahrt, S. Witt, J. Hendle, D. Schomburg, H.M. Kalisz, H.J. Hecht, Acta Cryst. D Biol. Cryst. 55, 969 (1999)

    Article  CAS  Google Scholar 

  17. F.N. Comba, M.R. Romero, F.S. Garay, A.M. Baruzzi, Anal. Biochem. 550, 34 (2018)

    Article  CAS  PubMed  Google Scholar 

  18. D.F. Malherbe, M. du Toit, R.R.C. Otero, P. van Rensburg, I.S. Pretorius, Appl. Microbiol. Biotechnol. 61, 502 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. S.B. Bankar, M.V. Bule, R.S. Singhal, L. Ananthanarayan, Biotechnol. Adv. 27, 489 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. C.F. Thurston, Microbiol. 140, 19 (1994)

    Article  CAS  Google Scholar 

  21. S.V. Surwase, S.A. Patil, S. Srinivas, J.P. Jadhav, Enzyme Microb. Technol. 82, 110 (2016)

    Article  CAS  PubMed  Google Scholar 

  22. L.N. Nguyen, J.P. van de Merwe, F.I. Hai, F.D.L. Leusch, J. Kang, W.E. Price, F. Roddick, S.F. Magram, L.D. Nghiem, Bioresour. Technol. 200, 477 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. M. Chivukula, V. Renganathan, Appl. Environ. Microbiol. 61, 4374 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. K. Agrawal, V. Chaturvedi, P. Verma, Bioresour. Bioprocess. 5, 4 (2018)

    Article  Google Scholar 

  25. C. Jung, J.I. Rhee, D.I. Yoo, Y. Shin, Fiber. Polym. 23, 127 (2022)

    Article  CAS  Google Scholar 

  26. P.A. Shaffer, T.E. Friedemann, J. Biol. Chem. 86, 345 (1930)

    Article  CAS  Google Scholar 

  27. B.Y. Yang, R. Montgomery, Carbohydr. Res. 280, 27 (1996)

    Article  CAS  Google Scholar 

  28. Y. Degani, A. Heller, J. Phys. Chem. 91, 1285 (1987)

    Article  CAS  Google Scholar 

  29. M. Božič, V. Kokol, G.M. Guebitz, Text. Res. J. 79, 895 (2009)

    Article  Google Scholar 

  30. C. Vaz-Dominguez, S. Campuzano, O. Rudiger, M. Pita, M. Gorbacheva, S. Shleev, V.M. Fernadez, A.L. De Lacey, Biosens. Bioelectron. 24, 531 (2008)

    Article  CAS  PubMed  Google Scholar 

  31. S. Riva, TIBTECH 24, 219 (2006)

    Article  CAS  Google Scholar 

  32. M.A. Kulandainathan, K. Patil, A. Muthukumaran, R.B. Chanvan, Color. Technol. 123, 143 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) (NRF-2019R1I1A3A01057222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Il Rhee.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duong, H.D., Rhee, J.I. Improving Indigo Reduction to Leuco-Indigo by Glucose by Means of Direct Electron Transfer and Electron Carriers of Enzymes. Fibers Polym 24, 361–371 (2023). https://doi.org/10.1007/s12221-023-00037-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00037-7

Keywords

Navigation