Skip to main content
Log in

Potential of Titanium Dioxide to Remove Bromothymol Blue (BTB) in Aqueous Solution by Batch Mode Adsorption–Kinetic, Isotherm and Thermodynamic Studies

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The adsorption is widely used to remove certain classes of pollutants from water, especially those that are hardly biodegradable and dyes represent one of these problematic groups. The removal of bromothymol blue (BTB) from wastewater using TiO2 was studied in batch system. The adsorbent TiO2 has a specific surface area of 400 m2/g, a mean crystallites sizes (5–10 nm), and pHpzc equal to 6.5. TiO2 is stable over the whole pH range and constitutes a good compromise between efficiency and stability (in both acidic and basic media), therefore, the use of other additives is not necessary. Its non-toxicity and low energy required for its activation (E ~ 3 eV) as well as its low cost for most of the applications envisaged make it advantageous. The influence of effective variables such as solution pH (1–10), contact time (0–60 min), initial BTB concentration (5–40 mg/l), adsorbent dose of TiO2 (0.2–2 g/l), and temperature (20–60 °C) on the adsorption efficiency was examined, while the BTB content was determined by UV–Vis spectrophotometry. The optimal pH, adsorbent dose, and contact time for the efficient removal were found to be 10, 0.2 g/l, and 30 min, respectively, and the adsorbent was characterized by the BET analysis and point of zero charge (pHpzc). Among the different kinetic models, the experimental data of the BTB removal are well fitted with the pseudo-first-order kinetic model with a high determination coefficient. The evaluation of the fitness of equilibrium data by various conventional isotherm models, based on the R2 value as criterion, show the successful applicability of the Langmuir model for the interpretation of experimental data with a maximum adsorption capacity (qmax) of 27.02 mg/g at 20 °C and R2 of 0.997. The adsorption isotherms at different temperatures have been used for the determination of the free energy (ΔGo = 2.1808 to—1.0981 kJ/mol), enthalpy (ΔHo = 20.74 kJ/mol), and entropy (ΔSo = 65.58 J/mol/K) indicate that the overall adsorption is spontaneous and endothermic in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I. Anastopoulos, G.Z. Kyzas, J. Mol. Liq. 200, 381 (2014)

    CAS  Google Scholar 

  2. I. Ali, M. Asim, T.A. Khan, J. Environ. Manag. 113, 170 (2012)

    CAS  Google Scholar 

  3. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, J. Colloid, Interface Sci. 209, 172 (2014)

    CAS  Google Scholar 

  4. I. Kabdasli, O. Tunay, D. Orhon, Water Sci. Technol. 40, 261 (1996)

    Google Scholar 

  5. M. Mahramanlioglu, M. Zahoor, A. Cinarli, I. Kizilcikli, Fresenius Environ. Bull. 19, 911 (2010)

    CAS  Google Scholar 

  6. Y.C. Wong, Y.S. Szeto, W.H. Cheung, G. McKay, Process Biochem. 39, 695 (2004)

    Google Scholar 

  7. B. Saritha, K. Rajasekhar, K. Kiso, Int. J. Innov. Res. Sci, Eng. Technol., 4, 6821 (2015).

  8. K.H. Hassan, E.M. Mahdi, Asian J. Appl. Sci. 4, 730 (2016)

    Google Scholar 

  9. V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agarwal, RSC Adv. 2, 6380 (2012)

    CAS  Google Scholar 

  10. I. Ali, T.A. Khan, M. Asim, Sep. Purif. Rev. 40, 25 (2011)

    CAS  Google Scholar 

  11. S. Karthikeyan, V.K. Gupta, R. Boopathy, A. Titus, G. Sekaran, J. Mol. Liq. 173, 153 (2012)

    CAS  Google Scholar 

  12. T.A. Saleh, V.K. Gupta, J. Colloid Interface Sci. 371, 101 (2012)

    CAS  PubMed  Google Scholar 

  13. M. Abbas, M. Trari, Desalin. Water Treat. 180, 398 (2020)

    CAS  Google Scholar 

  14. M. Abbas, M. Trari, Scientific African 8, e00387 (2020)

    Google Scholar 

  15. Y.-H. Chiu, T.-F. Mark Chang, C.-Y. Chen, M. Sone, and Y.-J. Hsu, Catalysts, 9, 430 (2019).

  16. M.-J. Fang, C.-W. Tsao, Y.-J. Hsu, J. Phys. D: Appl. Phys. 53, 143001 (2020)

    CAS  Google Scholar 

  17. Y.-H. Chiu, Y.-J. Hsu, Nano Energy 31, 286 (2017)

    CAS  Google Scholar 

  18. Y.C. Pu, H.-Y. Chou, W.-S. Kuo, K.-H. Wei, Y.-J. Hsu, Appl. Catal. B: Environ. 204, 21 (2017)

    CAS  Google Scholar 

  19. Y.C. Pu, W.-H. Lin, Y.-J. Hsu, Appl. Catal. B: Environ. 163, 343 (2015)

    CAS  Google Scholar 

  20. Y.-D. Chiou, Y.-J. Hsu, Appl. Catal. B: Environ. 105, 211 (2011)

    CAS  Google Scholar 

  21. Y.-F. Lin, Y.-J. Hsu, Appl. Catal. B: Environ. 130–131, 93 (2013)

    Google Scholar 

  22. M.-Y. Chen, Y.-J. Hsu, Nanoscale 5, 363 (2013)

    CAS  PubMed  Google Scholar 

  23. R. Saravanan, E. Sacari, F. Gracia, M.M. Khan, E. Mosquera, V.K. Gupta, J. Mol. Liq. 221, 1029 (2016)

    CAS  Google Scholar 

  24. M. Ghaedi, S. Hajjati, Z. Mahmudi, I. Tyagi, S. Agarwal, A. Maity, V.K. Gupta, Chem. Eng. J. 268, 28 (2015)

    CAS  Google Scholar 

  25. S. Rajendran, M.M. Khan, F. Gracia, J. Qin, V.K. Gupta, S. Arumainathan, Sci. Rep. 6, 31641 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. M. Abbas, Adsorpt. Sci. Technol. 38, 24 (2020)

    CAS  Google Scholar 

  27. M. Abbas, Z. Harrache, M. Trari, J. Eng. Fiber. Fabr. 15, 1 (2020)

    Google Scholar 

  28. M. Abbas, Mater. Today: Proc. 31, 437 (2020)

    CAS  Google Scholar 

  29. M. Abbas, J. Water Reuse Desalin 10, 251 (2020)

    CAS  Google Scholar 

  30. M. Abbas, M. Trari, Fibers Polym. 21, 810 (2020)

    CAS  Google Scholar 

  31. M. Abbas, Z. Harrache, M. Trari, Adsorpt. Sci. Technol. 37, 566 (2019)

    CAS  Google Scholar 

  32. E.A. Dil, M. Ghaedi, A.M. Ghaedi, A. Asfaram, A. Gourdarzi, S. Hajati, M. Soylak, S. Agarwal, V.K. Gupta, J. Ind. Eng. Chem. 34, 186 (2016)

    CAS  Google Scholar 

  33. Suhas, V. K. Gupta, P. J. M. Carrott, R. Singh, M. Chaudhary, and S. Kushwaha, Bioresour. Technol., 216, 1066 (2016).

  34. A.E. Burakov, E.V. Galunin, I.V. Burakova, A.E. Kucherova, S. Agarwal, A.G. Tkachev, V.K. Gupta, Ecotoxicol. Environ. Saf. 148, 702 (2018)

    CAS  PubMed  Google Scholar 

  35. X. Liu, S.Q. Zhang, X. Wei, T. Yang, M.L. Chen, J.H. Wang, Biosens. Bioelectron. 109, 150 (2018)

    CAS  PubMed  Google Scholar 

  36. C. Rukchon, A. Nopwinyuwong, S. Trevanich, T. Jinkarn, P. Suppakul, Talanta 130, 547 (2014)

    CAS  PubMed  Google Scholar 

  37. L. Gao, X. Yang, Y. Shu, X. Chen, J. Wang, J. Colloid Interface Sci. 512, 819 (2018)

    CAS  PubMed  Google Scholar 

  38. M. Abbas, T. Aksil, M. Trari, Desalin. Water Treat. 125, 93 (2018)

    CAS  Google Scholar 

  39. S. Agarwal, H. Sadegh, M. Monajjemi, A.S. Hamdy, G.A.M. Ali, A.O.H. Memar, S. Ghoshekandi, R. Tyagi, V.K. Gupta, J. Mol. Liq. 218, 191 (2016)

    CAS  Google Scholar 

  40. V.K. Gupta, A. Mittal, V. Gajbe, J. Colloid Interface Sci. 284, 89 (2005)

    CAS  PubMed  Google Scholar 

  41. W.-T. Tsai, H.-C. Hsu, T.-Y. Su, K.-Y. Lin, C.-M. Lin, T.-H. Dai, J. Hazard. Mater. 147, 1056 (2007)

    CAS  PubMed  Google Scholar 

  42. Z. Harrache, M. Abbas, T. Aksil, M. Trari, Desalin. Water Treat. 147, 273 (2019)

    CAS  Google Scholar 

  43. T. Sauer, G. Cesconeto Neto, H. J. José, and R. F. Moreira, J. Photochem. Photobiol. A: Chem., 149, 147 (2002).

  44. M.H. Habibi, A. Hassanzadeh, S. Mahdavi, J. Photochem. Photobiol. A: Chem. 172, 89 (2005)

    CAS  Google Scholar 

  45. Y. S. Ho and G. McKay, Trans IChemE, 76, Part B, 183 (1998).

  46. R.S. Juang, M.L. Chen, Ind. Eng. Chem. Res. 36, 813 (1997)

    CAS  Google Scholar 

  47. G. Woodbury, Physical Chemistry (Brooks/Cole Publishing Company, New York, 1997), p.820

    Google Scholar 

  48. W. J. Weber and J. C. Morris, J. Sanit. Eng. Div., Am. Soc. Civ. Eng., 89, 31 (1963).

  49. I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918)

    CAS  Google Scholar 

  50. M. Temkin, V. Pyzhev, Acta Physicochim. URSS 12, 327 (1940)

    CAS  Google Scholar 

  51. H.M.F. Freundlich, Z. Phys, Chem. 57, 385 (1906)

    CAS  Google Scholar 

  52. M. Ghaedj, F. Karimi, B. Barrazzch, R. Sahraei, A. Danichfar, J. Ind. Eng. Chem. 19, 756 (2013)

    Google Scholar 

  53. A. Ahmad, M. Rafatullah, O. Sulaiman, M.H. Ibrahim, R. Hashim, J. Hazard. Mater 170, 357 (2009)

    CAS  PubMed  Google Scholar 

  54. M. Ghaedi, A. Ansari, M.H. Habibi, A.R. Asghari, J. Ind. Eng. Chem. 20(1), 17 (2014)

    CAS  Google Scholar 

  55. D. Robati, M. Rajabi, O. Moradi, F. Najafi, I. Tyagi, S. Agarwal, V.K. Gupta, J. Mol. Liq 214, 259 (2016)

    CAS  Google Scholar 

  56. T.A. Khan, M. Nazir, Environ. Prog. Sustain Energy 34, 1444 (2015)

    CAS  Google Scholar 

  57. M. Ghaedi, E. Nazari, R. Sahrai, M.K. Purkait, Desalin. Water Treat. 52, 5504 (2014)

    CAS  Google Scholar 

  58. S.I. Abubaker, M.B. Ibrahim, J. Pure Appl. Sci. 11, 273 (2018)

    Google Scholar 

  59. A.E. Adnan, T.A. Selman, Res. J. Pharm. Biol. Chem. Sci. 7, 591 (2016)

    CAS  Google Scholar 

  60. S.H. Lubbad, B.K.A. Al-Roos, F.S. Kodeh, Curr. Green Chem. 6, 53 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the work was provided by Boumerdes University, Science faculty, Chemical department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moussa Abbas.

Ethics declarations

Conflict of Interest

The authors attest that there are no conflict of interest and financial, personal, or other relationships with other people, laboratories, or organizations worldwide.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, M. Potential of Titanium Dioxide to Remove Bromothymol Blue (BTB) in Aqueous Solution by Batch Mode Adsorption–Kinetic, Isotherm and Thermodynamic Studies. Fibers Polym 24, 603–612 (2023). https://doi.org/10.1007/s12221-023-00022-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00022-0

Keywords

Navigation