Skip to main content
Log in

Characterization of Cellulose Fiber Extracted from Stems of Myriostachya wightiana (MW) Plants: A Viable Reinforcement for Polymer Composite

  • Regular article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

There is an urgent need to investigate more eco-friendly fibres due to the high cost of traditional cellulosic fibres. Eco-friendly MW fibre was extracted and characterised as a potential replacement for risky artificial fibre. Physicochemical, XRD, FTIR, SEM, thermal analysis, and Weibull distribution methods were used to study MW fibre as a biocomposite reinforcement. The density, tensile strength, Young's modulus, strain at failure, and micro-fibril angle of MW fibre with an average diameter of 102.278 μm were found to be 1372–1510 kg/m3, 46.554 MPa, 2.442 GPa, 8–9%, and 22 ± 1°, respectively. The predicted Young's modulus and strength of the fibre showed a good match with the experimental data in the Weibull distribution analysis. In addition, FTIR verified the presence of cellulose (O = H), hemicellulose (C = O), lignin (C = C), and wax (CC) in the fibre. XRD study reveals CI and CS of 58.07% and 2.86 nm, respectively. The activation energy of 63.156 kJ/mol and thermal stability up to 300 °C were noted during TGA, DTGA, and DSC studies. The fiber's high cellulose content (70 wt%) and roughness (23.664 \(\upmu\)m) contributed to its specific strength and adherence to the polymer matrix. The importance of the present study suggests potential applications of this fiber in the fields of papermaking, packaging, lignocellulose composites, and cellulose nanocomposite manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.R. Sanja, S. Siengchin, J. Parameswaranpillai, M. Jawaid, C.I. Pruncu, A. Khan, Carbohyd. Polym. 207, 108 (2019)

    Google Scholar 

  2. K. Majeed, M. Jawaid, A. Hassan, A.A. Bakar, H.A. Khalil, A.A. Salema, I. Inuwa, Mater. Des. 46, 391 (2013)

    CAS  Google Scholar 

  3. D. Fouad, M. Farag, Design for sustainability with biodegradable composites, in Evren Yasa. ed. by M. Mhadhbi, E. Santecchia (Design and manufacturing, IntechOpen, 2019), pp.1–7

    Google Scholar 

  4. K.J. Nagarajan, M.R. Sanjay, G.R. Raghav, and Anish Khan. Polym. Compos. 43, 4942 (2022)

    Google Scholar 

  5. S. Indran, R.E. Raj, Carbohyd. Polym. 117, 392 (2015)

    CAS  Google Scholar 

  6. M.T.G.A. Selvan, J.S. Binoj, J.T.E.J. Moses, N.P. Sai, S. Siengchin, M.R. Sanjay, Y. Liu, Polym. Compos. 43(1), 320 (2022)

    CAS  Google Scholar 

  7. A. Bismarck, S. Mishra, and T. Lampke, Natural Fibers, Biopolymers, and Biocomposites, 37 (2005).

  8. O. Faruk, A.K. Bledzki, H.P. Fink, M. Sain, Prog. Polym. Sci. 37(11), 1552 (2012)

    CAS  Google Scholar 

  9. Grand View Research, “Natural fiber composites market size : Industry report, 2024”, pp. 80 (2016).

  10. T.E. Omoniyi, B.A. Akinyemi, A.O. Olusoji, Am. J. Sci. Ind. Res. 4, 201 (2013)

    CAS  Google Scholar 

  11. A.K. Temitope, A.T. Onaopemipo, A.A. Olawale, O.O. Abayomi, Ind. Eng. Manage 4(164), 2169 (2015)

    Google Scholar 

  12. E. Behazin, M. Misra, A.K. Mohanty, Compos. part B. Engineering 118, 116 (2017)

    CAS  Google Scholar 

  13. C. Hu, J. Vittal, V. Guna, Y. Zhao, M. Chikkamaranahalli Boganarasimhaiah, N. Reddy, Polym. Composit. 42(11), 5801 (2021)

    CAS  Google Scholar 

  14. S.M. Rangappa, S. Siengchin, J. Parameswaranpillai, M. Jawaid, T. Ozbakkaloglu, Polym. Compos. 43(2), 645 (2022)

    CAS  Google Scholar 

  15. M.R.M. Asyraf, M. Rafidah, S. Ebadi, A. Azrina, M.R. Razman, Cellulose 29, 1–24 (2022)

    Google Scholar 

  16. M. Chhajed, C. Verma, M. Sathawane, S. Singh, P.K. Maji, Mar. Pollut. Bull. 180, 113790 (2022)

    CAS  PubMed  Google Scholar 

  17. P. Ponnu Krishnan, J. Selwin Rajadurai, J. Compos. Mater. 51(6), 811 (2017)

    Google Scholar 

  18. K. Ramanaiah, A.R. Prasad, K.H.C. Reddy, Mater. Lett. 89, 156 (2012)

    CAS  Google Scholar 

  19. T.P. Sathishkumar, P. Navaneethakrishnan, S. Shankar, Compos. Sci. Technol. 72(10), 1183 (2012)

    CAS  Google Scholar 

  20. S. Mondal, P. Memmott, D. Martin, J. Compos. Mater. 48(11), 1375 (2014)

    CAS  Google Scholar 

  21. G.P. Singh, P.V. Madiwale, R.N. Jagtap, R.V. Adivarekar, J. Appl. Polym. Sci. 131, 19 (2014)

    Google Scholar 

  22. V. Ahlawat, A. Parinam, S. Kajal, Indian J Eng Mater Sci 25, 295 (2018)

    CAS  Google Scholar 

  23. M.I. Devi, N. Nallamuthu, N. Rajini, A.V. Rajulu, N.H. Ram, S. Siengchin, Int. J. Biol. Macromol. 118, 99 (2018)

    Google Scholar 

  24. S. Ben Cheikh, R. Ben Cheikh, E. Cunha, P.E. Lopes, M.C. Paiva, Plast. Rubber. Compos. 47(7), 297 (2018)

    CAS  Google Scholar 

  25. A. Khan, R. Vijay, D.L. Singaravelu, M.R. Sanjay, S. Siengchin, F. Verpoort, A.M. Asiri, J. Nat. Fibers 18(11), 1742 (2021)

    CAS  Google Scholar 

  26. V. Guna, M. Ilangovan, K. Adithya, C.V. Akshay Koushik, C.V. Srinivas, S. Yogesh, G.S. Nagananda, K. Venkatesh, N. Reddy, Carbohydr. Polym. 218, 243 (2019)

    CAS  PubMed  Google Scholar 

  27. A. Khan, R. Vijay, D.L. Singaravelu, M.R. Sanjay, S. Siengchin, F. Verpoort, A.M. Asiri, J. Nat. Fibers 18(11), 1893 (2021)

  28. L. Mohammed, M.N. Ansari, G. Pua, M. Jawaid, M.S. Islam, Int. J. Polym. Sci. (2015). https://doi.org/10.1155/2015/243947

    Article  Google Scholar 

  29. N.A. Bakar, C.Y. Chee, L.C. Abdullah, C.T. Ratnam, N.A. Ibrahim, Mater. Des. (1980–2015) 65, 204 (2015)

    Google Scholar 

  30. L. Sisti, Retting process as a pretreatment of natural fibers for the development of polymer composites, in Lignocellulosic composite materials. ed. by S. Kalia (Springer, Cham, 2018), pp.97–135

    Google Scholar 

  31. S.M. Rangappa, S. Siengchin, Express Polym. Lett. 16(5), 451–452 (2022)

    Google Scholar 

  32. M. Bazli, M. Heitzmann, B.V. Hernandez, Compo Struct. 295, 115827 (2022)

    CAS  Google Scholar 

  33. M.R. Bambach, Compos. Part C 2, 100013 (2020)

    CAS  Google Scholar 

  34. K.G. Sagar, K. Ramachandran, K. Kosanam, B.M.R. Bharathi, M. Rama, S. Bhattacharya, Mater. Today: Proc. 69, 1274 (2022)

    CAS  Google Scholar 

  35. K.J. Nagarajan, N.R. Ramanujam, M.R. Sanjay, S. Siengchin, B. Surya Rajan, K. Sathick Basha, G.R. Raghav, Polym. Compos. 42(4), 1588 (2021)

    CAS  Google Scholar 

  36. S.C. Sahu, N.K. Dhal, N.H. Ravindranath, Int. J. Innov. Appl. Res. 3, 9 (2015)

    Google Scholar 

  37. P. Rashid, A. Ahmed, Dhaka. Univ. J. Biol. Sci. 20, 205 (2011)

    Google Scholar 

  38. K.P. Kumar, A.S.J. Sekaran, J. Reinf. Plast. Compos. 33(20), 1879 (2014)

    Google Scholar 

  39. ASTM D2320‐98, "Standard Test Method for Density (Relative Density) of Solid Pitch (Pycnometer Method)", ASTM International, West Conshohocken, United States, 2017.

  40. P. Manimaran, G.P. Pillai, V. Vignesh, M. Prithiviraj, Int. J. Biol. Macromol. 162, 1807 (2020)

    CAS  PubMed  Google Scholar 

  41. A.A.M. Moshi, D. Ravindran, S.S. Bharathi, S. Indran, S.S. Saravanakumar, Y. Liu, Int. J. Biol. Macromol. 142, 212 (2020)

    CAS  PubMed  Google Scholar 

  42. G.L. Devnani, S. Sinha, Compos. B Eng. 166, 436 (2019)

    CAS  Google Scholar 

  43. Z. Belouadah, A. Ati, M. Rokbi, Carbohyd. Polym. 134, 429 (2015)

    CAS  Google Scholar 

  44. M. Guo, T.H. Zhang, B.W. Chen, L. Cheng, Compos. A Appl. Sci. Manuf. 62, 45 (2014)

    CAS  Google Scholar 

  45. D. Ravindran, S.R. Sundara Bharathi, S. Indran, J. Int, Biol. Macromol. 156, 997 (2020)

    Google Scholar 

  46. M. Kathirselvam, A. Kumaravel, V.P. Arthanarieswaran, S.S. Saravanakumar, Carbohyd. Polym. 217, 178 (2019)

    CAS  Google Scholar 

  47. D.L. Naik, T.H. Fronk, Fibers and Polymers 17(10), 1696 (2016)

    CAS  Google Scholar 

  48. F. Wang, J. Shao, Polymers 6(12), 3005 (2014)

    CAS  Google Scholar 

  49. M. T Holtzapple in "Encyclopedia of food sciences and nutrition", 2nd ed., pp, Academic Press, Oxford, 2003 .998–1007

  50. M.T Holtzapple in "Encyclopedia of food sciences and nutrition", 2nd ed., pp.3060–3071, Academic Press, Oxford, 2003

  51. C.M. Conrad, Ind. Eng. Chem. Anal. Ed. 16(12), 745 (1944)

    CAS  Google Scholar 

  52. T.P. Sathishkumar, P. Navaneethakrishnan, S. Shankar, R. Rajasekar, Compos. Interfaces 20(8), 575 (2013)

    CAS  Google Scholar 

  53. P. Senthamaraikannan, M. Kathiresan, Carbohyd. Polym. 186, 332 (2018)

    CAS  Google Scholar 

  54. P. Manimaran, P. Senthamaraikannan, M.R. Sanjay, M.K. Marichelvam, M. Jawaid, Carbohyd. Polym. 181, 650 (2018)

    CAS  Google Scholar 

  55. M.A. Farrukh, K.M. Butt, K.K. Chong, W.S. Chang, J. Saudi. Chem. Soc. 23(5), 561 (2019)

    CAS  Google Scholar 

  56. A. Broido, J. Polym. Sci. A. Polym. Phys. 7(10), 1761 (1969)

    CAS  Google Scholar 

  57. Z. Wu, J. Lu, X. Wang, B. Hu, H. Ye, J. Fan, X. Zeng, Carbohyd. Polym. 99, 226 (2014)

    CAS  Google Scholar 

  58. J. Tengsuthiwat, A. Vinod, R. Srisuk, L. Techawinyutham, S.M. Rangappa, S. Siengchin, J. Polym. Environ. 30(4), 1391 (2022)

    CAS  Google Scholar 

  59. A. Bezazi, A. Belaadi, M. Bourchak, F. Scarpa, K. Boba, Compos. B: Eng. 66, 194 (2014)

    CAS  Google Scholar 

  60. P.G. Baskaran, M. Kathiresan, P. Senthamaraikannan, S.S. Saravanakumar, J. Nat. Fibers 15(1), 62 (2018)

    CAS  Google Scholar 

  61. T.P. Sathishkumar, P. Navaneethakrishnan, S. Shankar, R. Rajasekar, N. Rajini, J. Reinf. Plast. Compos. 32(19), 1457 (2013)

    Google Scholar 

  62. J. Jayaramudu, B.R. Guduri, A.V. Rajulu, Carbohydr. Polym. 79(4), 847 (2010)

    CAS  Google Scholar 

  63. R. Kumar, S. Sivaganesan, P. Senthamaraikannan, S.S. Saravanakumar, A. Khan, S. Ajith Arul Daniel, L. Loganathan, J Nat. Fibers 19(1), 199 (2022)

    CAS  Google Scholar 

  64. J.S. Binoj, R.E. Raj, B.S.S. Daniel, J. Clean. Prod. 142, 1321 (2017)

    CAS  Google Scholar 

  65. N.R.J. Hyness, N.J. Vignesh, P. Senthamaraikannan, S.S. Saravanakumar, M.R. Sanjay, J. Nat. Fibers 15(1), 146 (2018)

    CAS  Google Scholar 

  66. N. Lemita, S. Deghboudj, M. Rokbi, F.M.L. Rekbi, R. Halimi, J. Compos. Mater. 56(1), 99 (2022)

    CAS  Google Scholar 

  67. M. Maran, R. Kumar, P. Senthamaraikannan, S.S. Saravanakumar, S. Nagarajan, M.R. Sanjay, S. Siengchin, J. Nat. Fibers 19(5), 1659 (2022)

    CAS  Google Scholar 

  68. E.K. Silva, M. Martelli-Tosi, R. Vardanega, G.C. Nogueira, G.L. Zabot, M.A.A. Meireles, J. Clean. Prod. 189, 231 (2018)

    CAS  Google Scholar 

  69. J.D.S. Rocha, V.A. Escócio, L.L. Visconte, É.B. Pacheco, J. Reinf. Plast. Compos. 40(19–20), 726 (2021)

    CAS  Google Scholar 

  70. M.E. Ali, A. Alabdulkarem, Constr. Build. Mater. 138, 276 (2017)

    CAS  Google Scholar 

  71. J.S.S. Neto, R.A.A. Lima, D.K.K. Cavalcanti, J.P.B. Souza, R.A.A. Aguiar, M.D. Banea, J. Appl. Polym. Sci. 136(10), 47154 (2019)

    Google Scholar 

  72. M. Jawaid, L. K. Kian, H. Fouad, N. Saba, O. Y. Alothman, and M. Hashem, J. Nat. Fibers, 1–11 (2021).

  73. M. Kathirselvam, A. Kumaravel, V.P. Arthanarieswaran, S.S. Saravanakumar, Int. J. Biol. Macromol. 129, 396 (2019)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar Parida.

Ethics declarations

Conflict of interest

The author(s) declare no competing financial interest or personal relationships with respect to the research, authorship and/or publication of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, P.K., Pradhan, A.K. & Pandit, M.K. Characterization of Cellulose Fiber Extracted from Stems of Myriostachya wightiana (MW) Plants: A Viable Reinforcement for Polymer Composite. Fibers Polym 24, 489–503 (2023). https://doi.org/10.1007/s12221-023-00020-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-023-00020-2

Keywords

Navigation