Skip to main content

Flexural Properties of Multi-Tow Structures Constructed from Glass/Polypropylene Tape under Various Manufacturing Conditions

Abstract

In this study, a multi-tow structure that can provide load-bearing functionality was fabricated through a proposed consolidation process proposed using polypropylene-impregnated continuous-glass-fiber composite tape (glass/PP tape). The flexural properties of the multi-tow structure were analyzed to evaluate the influence of the processing temperature, processing speed, number of glass/PP tapes, and glass fiber content of the glass/PP tapes. The proposed process for constructing the multi-tow structure can generate straight, curved, and looped three-dimensional structures by using a multi-joint robot and instantaneous consolidation of glass/PP tapes. As the number of glass/PP tapes increased, the resin-rich area increased and the void volume fraction in the multi-tow structure increased from 2 to 5 vol%, while the flexural strength decreased. However, when the number of glass/PP tapes and processing temperature were adjusted appropriately, the flexural strength of the multi-tow structure that can be constructed at speeds 30 times faster than those of conventional pultrusion process was relatively superior. The results of a finite element analysis, confirmed that the inclusion of the proposed multi-tow structure in a bumper beam was effective in reducing deformation and absorbing the impact energy due to external loads.

References

  1. B. H. Lee, H. J. Kim, and W. Yu, Fiber. Polym., 10, 83 (2009).

    CAS  Article  Google Scholar 

  2. Ö. F. Erkendirci, Fiber. Polym., 13, 57 (2012).

    CAS  Article  Google Scholar 

  3. H. Awais, Y. Nawab, A. Anjang, H. M. Akil, and M. S. Z. Abidin, Fiber. Polym., 21, 2076 (2020).

    CAS  Article  Google Scholar 

  4. D. Hara and G. O. Özgen, Transportation Research Procedia, 14, 1013 (2016).

    Article  Google Scholar 

  5. A. Patil, A. Patel, and R. Purohit, Materials Today: Proceedings, 4, 3807 (2017).

    Google Scholar 

  6. T. Ishikawa, K. Amaoka, Y. Masubuchi, T. Yamamoto, A. Yamanaka, M. Arai, and J. Takahashi, Compos. Sci. Technol., 155, 221 (2018).

    CAS  Article  Google Scholar 

  7. https://en.wikipedia.org/wiki/List_of_countries_by_motor_vehicle_production (Accessed May 2, 2021).

  8. J. L. Thomason and M. A. Vlug, Compos. Part A-Appl. Sci. Manuf., 27A, 477 (1996).

    CAS  Article  Google Scholar 

  9. J. L. Thomason and M. A. Vlug, Compos. Part A-Appl. Sci. Manuf., 28A, 277 (1997).

    CAS  Article  Google Scholar 

  10. J. L. Thomason, Compos. Part A-Appl. Sci. Manuf., 33, 1641 (2002).

    Article  Google Scholar 

  11. J. L. Thomason, Compos. Part A-Appl. Sci. Manuf., 36, 995 (2005).

    Article  Google Scholar 

  12. M. I. Okereke, Compos. Part B-Eng., 89, 388 (2016).

    CAS  Article  Google Scholar 

  13. P. E. Bourban, N. Bernet, J. E. Zannetto, and J.-A.E. Månson, Compos. Part A-Appl. Sci. Manuf., 32, 1045 (2001).

    Article  Google Scholar 

  14. A. Carlsson and B. T. Åström, Compos. Part A-Appl. Sci. Manuf., 29A, 585 (1998).

    CAS  Article  Google Scholar 

  15. P. J. Novo, J. F. Silva, J. P. Nunes, and A. T. Marques, Compos. Part B-Eng., 89, 328 (2016).

    CAS  Article  Google Scholar 

  16. P. E. Bourban, A. Bögli, F. Bonjour, and J. A. E. Månson, Compos. Sci. Technol., 58, 633 (1998).

    CAS  Article  Google Scholar 

  17. M. D. Wakeman, P.-O. Hagstrand, F. Bonjour, P.-E. Bourban, and J. A. E. Månson, Compos. Part A-Appl. Sci. Manuf., 33, 1199 (2002).

    Article  Google Scholar 

  18. C. H. Sohn, O. Kim, Y. Chun, and J. W. Lee, SAE Technical Paper 2013-01-1396, 2013.

  19. O. Gooranorimi, W. Suaris, E. Dauer, and A. Nanni, Compos. Part B-Eng., 110, 388 (2017).

    CAS  Article  Google Scholar 

  20. M. Mehdikhani, L. Gorbatikh, I. Verpoest, and S. V. Lomov, J. Compos. Mater., 53, 1579 (2019).

    CAS  Article  Google Scholar 

  21. S. J. Joo, M. H. Yu, W. S. Kim, J. W. Lee, and H. S. Kim, Compos. Struct., 236, 111849 (2020).

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by LOTTE CHEMICAL Co. research funds for 2017–2018 (LRD-17-0108, LRD-18-0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Gon Kim.

Ethics declarations

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, JW., Kim, WS. & Kim, CG. Flexural Properties of Multi-Tow Structures Constructed from Glass/Polypropylene Tape under Various Manufacturing Conditions. Fibers Polym 23, 1965–1974 (2022). https://doi.org/10.1007/s12221-022-4878-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4878-5

Keywords

  • Multi-tow structure
  • Continuous-glass-fiber-reinforced composites
  • Glass/PP tape
  • Insert injection molding
  • Bumper beam