Skip to main content

High-performance Electret and Antibacterial Polypropylene Meltblown Nonwoven Materials Doped with Boehmite and ZnO Nanoparticles for Air Filtration

Abstract

The current pandemic caused by COVID-19 has intensively triggered the development of high-performance air filters. Polypropylene (PP) is widely used as the raw material of meltblown nonwoven materials and is the core layer in air filters, such as masks. In this study, an electret PP meltblown nonwoven with antibacterial activity was developed, and nano boehmite (AlOOH) and nano-ZnO were employed as electret and antibacterial agents, respectively. AlOOH (0.5–2.0 wt%) and ZnO (1.0 wt%) were doped into the PP matrix using a twin-screw extruder, and the resulting masterbatches were applied as raw materials to produce nonwoven materials via a meltblown process. The as-prepared nonwoven samples were characterized by means of SEM, IR and DSC/TG. After corona charging, the filtration efficiency was determined by a filtration tester, charge decay was measured by an infrared electrostatic tester, and the antibacterial properties were evaluated (evaluation method: AATCC 100–2012). A dosage of AlOOH greater than 1.0 wt% endowed the nonwoven material with high filtration efficiency, and 1.0 wt% ZnO brought about antibacterial activity. Corona charging was an effective means to charge the nonwoven electret, and the charges were quicker to decay in air than in a sealed bag. The as-prepared meltblown nonwoven filter is a remarkably promising filter for air filtration.

References

  1. H. L. Corrêa and D. G. Corrêa, Front. Mater., 7, 283 (2020).

    Article  Google Scholar 

  2. H. A. Maddah, Am. J. Polym. Sci., 6, 1 (2016).

    CAS  Google Scholar 

  3. K. O’Dowd, K. M. Nair, P. Forouzandeh, S. Mathew, J. Grant, R. Moran, J. Bartlett, J. Bird, and S. C. Pillai, Materials, 13, 3363 (2020).

    Article  Google Scholar 

  4. Y. Ren, J. Guo, Q. Lu, D. Xu, J. Qin, and F. Yan, ChemSusChem., 11, 1092 (2018).

    CAS  Article  Google Scholar 

  5. R. Brindha, G. Thilagavathi, and S. Viju, J. Nat. Fibers, 17, 1439 (2019).

    Article  Google Scholar 

  6. W. Hao, G. Xu, and Y. Wang, J. Occup. Environ. Hyg., 18, 128 (2021).

    Article  Google Scholar 

  7. A. Tcharkhtchi, N. Abbasnezhad, M. Z. Seydani, N. Zirak, S. Farzaneh, and M. Shirinbayan, Bioact. Mater., 6, 106 (2021).

    CAS  Article  Google Scholar 

  8. T. Li, X. Cen, H. Ren, F. Sun, Q. Lin, C. Lou, and J. Lin, Polymers, 11, 1307 (2019).

    CAS  Article  Google Scholar 

  9. Y. Pu, J. Zheng, F. Chen, Y. Long, H. Wu, Q. Li, S. Yu, X. Wang, and X. Ning, Polymers, 10, 959 (2018).

    Article  Google Scholar 

  10. Y. Shen, S. Xia, P. Yao, R. Gong, Q. Liu, and B. Deng, Fiber. Polym., 18, 1568 (2017).

    CAS  Article  Google Scholar 

  11. M. A. Hassan, B. Y. Yeom, A. Wilkie, B. Pourdeyhimi, and S. A. Khan, J. Membr. Sci., 427, 336 (2013).

    CAS  Article  Google Scholar 

  12. R. Uppal, G. Bhat, C. Eash, and K. Akato, Fiber. Polym., 14, 660 (2013).

    CAS  Article  Google Scholar 

  13. J. Xue, T. Wu, Y. Dai, and Y. Xia, Chem. Rev., 119, 5298 (2019).

    CAS  Article  Google Scholar 

  14. T. D. Brown, P. D. Dalton, and D. W. Hutmacher, Prog. Polym. Sci., 56, 116 (2016).

    CAS  Article  Google Scholar 

  15. D. Park, M. Kim, S. Lee, I. J. Yoon, K. Lee, M. H. Lee, and J. Nah, Adv. Mater. Interfaces, 6, 1801832 (2019).

    Article  Google Scholar 

  16. H. Xiao, J. Gui, G. Chen, and C. Xiao, J. Appl. Polym. Sci., 132, 42807 (2015).

    Google Scholar 

  17. H. Zhang, J. Liu, X. Zhang, C. Huang, and X. Jin, RSC Adv., 8, 7932 (2018).

    CAS  Article  Google Scholar 

  18. B. Yu, J. Han, X. He, G. Xu, and X. Ding, J. Macromol. Sci. B, 51, 619 (2012).

    CAS  Article  Google Scholar 

  19. C. Lou, Y. Shih, C. Huang, S. A. Lee, Y. Chen, and J. Lin, Appl. Sci., 10, 2686 (2020).

    CAS  Article  Google Scholar 

  20. A. Kilic, E. Shim, and B. Pourdeyhimi, Aerosol. Sci. Tech., 49, 666 (2015).

    CAS  Article  Google Scholar 

  21. J. Hillenbrand, N. Behrendt, V. Altstädt, H. W. Schmidt, and G. M. Sessler, J. Phys. D. Appl. Phys., 39, 535 (2006).

    CAS  Article  Google Scholar 

  22. X. Ding, Y. Li, Y. Si, X. Yin, J. Yu, and B. Ding, Compos. Commun., 13, 57 (2019).

    Article  Google Scholar 

  23. Y. Li, X. Yin, Y. Si, J. Yu, and B. Ding, Chem. Eng. J., 398, 125626 (2020).

    CAS  Article  Google Scholar 

  24. R. Cai, S. Li, L. Zhang, and Y. Lei, Sci. Total Environ., 725, 138297 (2020).

    CAS  Article  Google Scholar 

  25. X. Yang, Y. Pu, S. Li, X. Liu, Z. Wang, D. Yuan, and X. Ning, ACS Appl. Mater. Inter., 11, 43188 (2019).

    CAS  Article  Google Scholar 

  26. H. Zhang, X. Zhang, P. Wang, R. Chen, G. Gu, S. Hu, and R. Tian, Nanotechnology, 32, 235601 (2021).

    CAS  Article  Google Scholar 

  27. F. Liu, M. Li, W. Shao, W. Yue, B. Hu, K. Weng, Y. Chen, X. Liao, and J. He, J. Colloid. Interface Sci., 557, 318 (2019).

    CAS  Article  Google Scholar 

  28. P. P. Tsai, H. Schreuder-Gibson, and P. Gibson, J. Electrostat., 54, 333 (2002).

    CAS  Article  Google Scholar 

  29. G. Chen, H. Xiao, and X. Wang, “2009 IEEE 9th International Conference on the Properties and Applications of Dielectric Materials”, IEEE, pp.389–391, 2009.

  30. R. Thakur, D. Das, and A. Das, Fiber. Polym., 15, 1436 (2013).

    Article  Google Scholar 

  31. A. Kilic, S. Russell, E. Shim, and B. Pourdeyhimi, “Fibrous Filter Media”, pp.95–121, Woodhead Publishing, 2017.

  32. L. Shi, Z. Li, W. Zheng, Y. Zhao, Y. Jin, and Z. Tang, Food. Addit. Contam., 31, 173 (2014).

    CAS  Article  Google Scholar 

  33. N. Q. T. Ton, T. N. T. Le, S. Kim, V. A. Dao, J. Yi, and T. H. T. Vu, J. Nanosci. Nanotechnol., 20, 2214 (2020).

    CAS  Article  Google Scholar 

  34. Q. Li, H. He, Z. Fan, R. Zhao, F. Chen, R. Zhou, and X. Ning, Polymers, 12, 606 (2020).

    CAS  Article  Google Scholar 

  35. V. D. Subramaniam, S. V. Prasad, A. Banerjee, M. Gopinath, R. Murugesan, F. Marotta, X. Sun, and S. Pathak, Drug. Chem. Toxicol., 42, 84 (2019).

    CAS  Article  Google Scholar 

  36. Y. V. Solovev, A. Y. Prilepskii, E. F. Krivoshapkina, A. F. Fakhardo, E. A. Bryushkova, P. A. Kalikina, E. I. Koshel, and V. V. Vinogradov, Sci. Rep., 9, 1 (2019).

    CAS  Article  Google Scholar 

  37. J. Lee and J. Kim, Polymers, 12, 721 (2020).

    CAS  Article  Google Scholar 

  38. G. Sun, H. Ge, J. Luo, and R. Liu, Prog. Org. Coat., 135, 19 (2019).

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We appreciate the financial support of the Major R&D Projects in Shandong Province (grant no. 2019JZZY020220) and the Open Fund of State Key Laboratory of Bio-Fibers and Eco-Textiles.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Wei He or Xin Ning.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Electronic supplementary material

12221_2022_4786_MOESM1_ESM.pdf

High-performance electret and antibacterial polypropylene meltblown nonwovens doped with nanoparticles of boehmite and ZnO for air filtration

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, MC., He, HW., Kong, WK. et al. High-performance Electret and Antibacterial Polypropylene Meltblown Nonwoven Materials Doped with Boehmite and ZnO Nanoparticles for Air Filtration. Fibers Polym 23, 1947–1955 (2022). https://doi.org/10.1007/s12221-022-4786-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4786-8

Keywords

  • Polypropylene
  • Meltblown nonwoven
  • Electret materials
  • Filtration
  • Antibacterial materials