Skip to main content
Log in

Interfacial Polyelectrolyte Complexation Spinning of Cellulose Nanofibers/CdTe Quantum Dots for Anti-counterfeiting Fluorescent Textiles

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Cellulose-based fluorescent fibers were successfully fabricated by interfacial polyelectrolyte complexation (IPC) spinning, in which thioglycolic acid-modified CdTe quantum dots (QDs) were incorporated. The fibers exhibited different fluorescent colors depending on different sizes of CdTe QDs. The IPC spinning process based on the progressive self-assembly of negatively charged cellulose nanofibers (CNFs) and positively charged chitosan endowed the fibers high orientation degree. Together with the superior mechanical property of CNFs and the strong interfacial ionic bond and hydrogen bond interaction between CNFs and chitosan, the fluorescent fibers showed a high tensile strength above 689 MPa and toughness above 25 MJ/m3, which provided a guarantee for weaving the fluorescent fibers into textiles. With excellent optical and mechanical performance, the resulting fluorescent fibers showed a promising potential as flexible wearable anti-counterfeiting devices, which the hard-to-see tag woven using the fluorescent fibers appeared clearly under 365 nm ultraviolet light illumination. This paper would provide a new avenue for the preparation of high-performance environment-friendly fluorescent anti-counterfeiting textiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Li and Y. Hu, Carbohydr. Polym., 203, 167 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. P. Kumar, J. Dwivedi, and B. Gupta, J. Mater. Chem. C., 2, 10468 (2014).

    Article  CAS  Google Scholar 

  3. J. M. Soon and L. Manning, Food Res. Int., 123, 135 (2019).

    Article  PubMed  Google Scholar 

  4. X. Fan, Z. Liu, X. Yang, W. Chen, W. Zeng, S. Tian, X. Yu, J. Qiu, and X. Xu, J. Rare Earths, 37, 679 (2019).

    Article  CAS  Google Scholar 

  5. X. Chen, Q. Wang, X.-J. Wang, J. Li, and G.-B. Xu, Sci. Rep., 11, 5841 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J. Liu, Y. Zhuang, L. Wang, T. Zhou, N. Hirosaki, and R. J. Xie, ACSAppl. Mater. Interfaces, 10, 1802 (2018).

    Article  CAS  Google Scholar 

  7. P. Xu, B. Chen, J. Li, and X. Wang, Blood, 122, 5028 (2013).

    Article  Google Scholar 

  8. B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, Science, 298, 1759 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, Nat. Biotechnol., 21, 47 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. K.-I. Hanaki, A. Momo, T. Oku, A. Komoto, S. Maenosono, Y. Yamaguchi, and K. Yamamoto, Biochem. Biophys. Res. Commun, 302, 496 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. D. Ag, R. Bongartz, L. E. Dogan, M. Seleci, J. G. Walter, D. O. Demirkol, F. Stahl, S. Ozcelik, S. Timur, and T. Scheper, Colloids Surf. B, 114, 96 (2014).

    Article  CAS  Google Scholar 

  12. Y. Ge, S. Chen, J. Yang, B. Wang, and H. Wang, RSC Adv., 5, 55756 (2015).

    Article  CAS  Google Scholar 

  13. C. Meng, Y. Xiao, P. Wang, L. Zhang, Y. Liu, and L. Tong, Adv. Mater., 23, 3770 (2011).

    CAS  PubMed  Google Scholar 

  14. A. Pescaglini and D. Iacopino, J. Mate. Chem. C, 3, 11785 (2015).

    Article  CAS  Google Scholar 

  15. J. Shen, C. Chui, and X. Tao, Biomed. Opt. Express, 4, 2925 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. V. Mecnika, M. Hoerr, I. Krievins, S. Jockenhoevel, and T. Gries, Mater. Sci. Text. Cloth. Technol, 9, 56 (2014).

    Google Scholar 

  17. Y. Yu and M. Q. Ge, Adv. Text. Technol., 21, 62 (2013).

    CAS  Google Scholar 

  18. Y. B. Wang and M. Q. Ge, Silk, 49, 45 (2012).

    Google Scholar 

  19. C. Zhan, P. R. Sharma, L. Geng, S. K. Sharma, R. Wang, R. Joshi, and B. S. Hsiao, Sci. China: Technol. Sci., 62, 971 (2019).

    Article  CAS  Google Scholar 

  20. S. Hooshmand, Y. Aitomäki, N. Norberg, A. P. Mathew, and K. Oksman, ACS Appl. Mater. Interfaces, 7, 13022 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. N. Mittal, F. Ansari, V. K. Gowda, C. Brouzet, P. Chen, P. T. Larsson, S. V. Roth, F. Lundell, L. Wågberg, N. A. Kotov, and L. D. Söderberg, ACS Nano, 12, 6378 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. L. Geng, Y. Cai, L. Lu, Y. Zhang, Y. Li, B. Chen, and X. Peng, ACS Sustainable Chem. Eng., 9, 2591 (2021).

    Article  CAS  Google Scholar 

  23. M. J. Lundahl, V. Klar, L. Wang, M. Ago, and O. J. Rojas, Ind. Eng. Chem. Res., 56, 8 (2017).

    Article  CAS  Google Scholar 

  24. Y. Mao, K. Liu, C. Zhan, L. Geng, B. Chu, and B. S. Hsiao, J. Phys. Chem. B, 121, 1340 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. J. Yao, P. Ji, B. Wang, H. Wang, and S. Chen, Sens. Actuators, B, 254, 110 (2018).

    Article  CAS  Google Scholar 

  26. K. Zhang and H. Liimatainen, Small, 14, 1801937 (2018).

    Article  CAS  Google Scholar 

  27. O. Nechyporchuk, R. Bordes, and T. Kohnke, ACS Appl. Mater. Interfaces, 9, 39069 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. R. Grande, E. Trovatti, A. J. Carvalho, and A. Gandini, J. Mater. Chem. A, 5, 13098 (2017).

    Article  CAS  Google Scholar 

  29. M. Amaike, Y. Senoo, and H. Yamamoto, Macromol. Rapid Commun., 19, 287 (1998).

    Article  CAS  Google Scholar 

  30. M. Toivonen, S. Kurki-Suonio, W. Wagermaier, V. Hynninen, S. Hietala, and O. Ikkala, Biomacromolecules, 18, 1293 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. C. Clemons, J. Renewable Mater., 4, 327 (2016).

    Article  CAS  Google Scholar 

  32. A. C. A. Wan, M. F. A. Cutiongco, B. C. U. Tai, M. F. Leong, H. F. Lu, and E. K. F. Yim, Mater. Today, 19, 437 (2016).

    Article  CAS  Google Scholar 

  33. Y. Cai, L. Geng, S. Chen, S. Shi, B. S. Hsiao, and X. Peng, ACS Appl. Mater. Interfaces, 12, 32090 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Biomacromolecules, 8, 2485 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Y. Mao, K. Liu, C. Zhan, L. Geng, B. Chu, and B. S. Hsiao, J. Phys. Chem. B, 121, 1340 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. H. Tang, N. Butchosa, and Q. Zhou, Adv. Mater., 27, 2070 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. D. V. Freitas, J. M. M. Dias, S. G. B. Passos, G. C. S. de Souza, E. T. Neto, and M. Navarro, Green Chem., 16, 3427 (2014).

    Article  CAS  Google Scholar 

  38. M. Lundahl, M. Berta, M. Ago, M. Stading, and O. Rojas, Eur. Polym. J, 109, 367 (2018).

    Article  CAS  Google Scholar 

  39. C. Rosca, M. I. Popa, G. Lisa, and G. C. Chitanu, Carbohydr. Polym., 62, 35 (2005).

    Article  CAS  Google Scholar 

  40. L. Yan, F. Qian, and Q. Zhu, J. Funct. Polym., 50, 1370 (2001).

    CAS  Google Scholar 

  41. F. Lv, C. Wang, P. Zhu, and C. Zhang, Cellulose, 21, 4405 (2014).

    Article  CAS  Google Scholar 

  42. X. Feng, Q. Shang, H. Liu, H. Wang, W. Wang, and Z. Wang, J. Phys. Chem. C, 113, 6929 (2009).

    Article  CAS  Google Scholar 

  43. H. Zhang, R. Wang, G. Yang, Y. Xu, and H. Shao, Polym. Eng. Sci, 56, 373 (2016).

    Article  CAS  Google Scholar 

  44. T. Cui, Z. Zhu, R. Cheng, Y. L. Tong, G. Peng, C. F. Wang, and S. Chen, ACS Appl. Mater. Interfaces, 10, 30785 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would also like to thank the support of National Natural Science Foundation of China (52003052), Natural Science Foundation of Fujian (2020J01895), Scientific Research Foundation of Fujian University of Technology (GY-Z18150) and Development Foundation of Fujian University of Technology (GY-Z18174).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihong Geng or Xiangfang Peng.

Supporting Information

12221_2022_4762_MOESM1_ESM.pdf

Interfacial Polyelectrolyte Complexation Spinning of Cellulose Nanofibers/CdTe Quantum Dots for Anti-counterfeiting Fluorescent Textiles

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, S., Hu, S., Wu, J. et al. Interfacial Polyelectrolyte Complexation Spinning of Cellulose Nanofibers/CdTe Quantum Dots for Anti-counterfeiting Fluorescent Textiles. Fibers Polym 23, 1235–1243 (2022). https://doi.org/10.1007/s12221-022-4762-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4762-3

Keywords

Navigation