Skip to main content
Log in

Triangular-prism Microstructure Engineered on the Fibrous Scaffold Using Electro-centrifugal Spinning Technique for Tissue Engineering

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Triangular-prism microstructure engineered on the surface of an aligned polycaprolactone (PCL) nanofibrous scaffold was fabricated using an electro-centrifugal spinning technique and molding approach for wound healing application. The PCL nanofiber pattern mirrored the triangular-prism microstructure of the pattern silicon substrate. The results of in vitro and in vivo experiments have indicated that the aligned nanofiber and triangular-prism in the microstructure scaffold play a synergistic role in guiding cell behaviors and responses. The peak of the triangular-prism could assist the movement of the cell and promote cell elongation behavior. By comparing with the flat scaffold in 7-day cultures, the microstructure exhibited a significant positive effect on cell behavior, including the 1.35 cell viability, 17.82±2.03 aspect ratio of cell elongation, and all cells oriented along with the triangular-prism microstructure. Moreover, this scaffold can achieve 96.81 % wound closure, and regenerated skin tissue demonstrated almost complete epithelialization. Most of the collagen fibers and proliferated fibroblast cells are arranged horizontally and mature on day 14. The results obtained from this fundamental study on the cell-surface interaction effect based on fibrous scaffolds have the potential for application in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Wang, B. Ding, and B. Li, Mater. Today, 16, 229 (2013).

    Article  CAS  Google Scholar 

  2. S. Dhivya, V. Padma, and E. Santhini, BioMed., 5, 24 (2015).

    Article  Google Scholar 

  3. S. Parham, A. Z. Kharazi, H. R. Bakhsheshi-Rad, H. Ghayour, A. F. Ismail, H. Nur, and F. Berto, Materials, 13, 2153 (2020).

    Article  CAS  Google Scholar 

  4. Z. Li, J. Zhang, Y. Fu, L. Yang, F. Zhu, X. Liu, Z. Gu, and Y. Li, J. Mater. Chem. B, 8, 7018 (2020).

    Article  CAS  Google Scholar 

  5. J. Hu, L. Yang, P. Yang, S. Jiang, X. Liu, and Y. Li, Biomater. Sci., 8, 4940 (2020).

    Article  CAS  Google Scholar 

  6. Z. Li, H. Li, J. Zhang, X. Liu, Z. Gu, and Y. Li, Chin. J. Polym. Sci., 38, 1149 (2020).

    Article  CAS  Google Scholar 

  7. R. Ghobeira, M. Asadian, C. Vercruysse, H. Declercq, N. De Geyter, and R. Morent, Polymer, 157, 19 (2018).

    Article  CAS  Google Scholar 

  8. J. Xie, M. R. MacEwan, W. Z. Ray, W. Liu, D. Y. Siewe, and Y. Xia, ACS Nano, 4, 5027 (2010).

    Article  CAS  Google Scholar 

  9. M. Eslamian, M. Khorrami, N. Yi, S. Majd, and M. R. Abidian, J. Mater. Chem. B, 7, 224 (2019).

    Article  CAS  Google Scholar 

  10. N. A. Norzain and W.-C. Lin, J. Ind. Text., 51, 6728S (2021).

    Article  Google Scholar 

  11. W.-C. Lin, I.-T. Yeh, E. Niyama, W.-R. Huang, M. Ebara, and C.-S. Wu, Polymers, 10, 231 (2018).

    Article  Google Scholar 

  12. W.-C. Lin, I.-T. Yeh, and H.-Y. Hsiao, IEEE Trans. Nanobioscienoe, 18, 18 (2019).

    Article  Google Scholar 

  13. C.-H. Hsieh, N. A. Mohd Razali, W.-C. Lin, Z.-W. Yu, D. Istiqomah, Y. Kotsuchibashi, and H.-H. Su, Nanomaterials, 10, 1427 (2020).

    Article  CAS  Google Scholar 

  14. L. Sun, W. Gao, X. Fu, M. Shi, W. Xie, W. Zhang, F. Zhao, and X. Chen, Biomater. Sci., 6, 340 (2018).

    Article  CAS  Google Scholar 

  15. W. E. Teo and S. Ramakrishna, Nanotechnology, 17, R89 (2006).

    Article  CAS  Google Scholar 

  16. H. Peng, Y. Liu, and S. Ramakrishna, J. Appl. Polym. Sci., 134, 44578 (2017).

    Google Scholar 

  17. H. Chen, X. Li, N. Li, and B. Yang, Text. Res. J., 87, 2349 (2017).

    Article  CAS  Google Scholar 

  18. S.-L. Liu, Y.-Z. Long, Z.-H. Zhang, H.-D. Zhang, B. Sun, J.-C. Zhang, and W.-P. Han, J. Nanomater., 2013, 713275 (2013).

    Google Scholar 

  19. N. A. Norzain and W. C. Lin, “2019 International Conference on Electrical Engineering and Computer Science”, pp.112-116, doi: https://doi.org/10.1109/ICECOS47637.2019.8984455 (2019).

  20. T. Fee, S. Surianarayanan, C. Downs, Y. Zhou, and J. Berry, PLoS One, 11, e0154806 (2016).

    Article  Google Scholar 

  21. C. H. Lee, H. J. Shin, I. H. Cho, Y.-M. Kang, I. A. Kim, K.-D. Park, and J.-W. Shin, Biomaterials, 26, 1261 (2005).

    Article  CAS  Google Scholar 

  22. D. Gupta, J. Venugopal, M. P. Prabhakaran, V. G. Dev, S. Low, A. T. Choon, and S. Ramakrishna, Acta Biomater., 5, 2560 (2009).

    Article  CAS  Google Scholar 

  23. J. Zhong, H. Zhang, J. Yan, and X. Gong, Colloids Surf. B, 136, 772 (2015).

    Article  CAS  Google Scholar 

  24. Y. M. Kolambkar, M. Bajin, A. Wojtowicz, D. W. Hutmacher, A. J. García, and R. E. Guldberg, Tissue Eng. Part A, 20, 398 (2014).

    Article  CAS  Google Scholar 

  25. Y. Liu, Y. Ji, K. Ghosh, R. A. F. Clark, L. Huang, and M. H. Rafailovich, J. Biomed. Mater. Res., 90A, 1092 (2009).

    Article  CAS  Google Scholar 

  26. H. H. Kim, M. J. Kim, S. J. Ryu, C. S. Ki, and Y. H. Park, Fiber. Polym., 17, 1033 (2016).

    Article  CAS  Google Scholar 

  27. L. Altomare, N. Gadegaard, L. Visai, M. C. Tanzi, and S. Fare, Acta Biomater., 6, 1948 (2010).

    Article  CAS  Google Scholar 

  28. M. Ermis, E. Antmen, and V. Hasirci, Bioact. Mater., 3, 355 (2018).

    Article  Google Scholar 

  29. A. M. Ross, Z. Jiang, M. Bastmeyer, and J. Lahann, Small, 8, 336 (2012).

    Article  CAS  Google Scholar 

  30. M. Théry, J. Cell Sci., 123, 4201 (2010).

    Article  Google Scholar 

  31. N. A. M. Razali, W.-C. Lin, N. A. Norzain, and Z.-W. Yu, Mater. Sci. Eng. C, 128, 112321 (2021).

    Article  Google Scholar 

  32. G. Mahmud, C. J. Campbell, K. J. Bishop, Y. A. Komarova, O. Chaga, S. Soh, S. Huda, K. Kandere-Grzybowska, and B. A. Grzybowski, Nat. Phys., 5, 606 (2009).

    Article  CAS  Google Scholar 

  33. M. Yoshinari, K. Matsuzaka, T. Inoue, Y. Oda, and M. Shimono, J. Biomed. Mater. Res., 65A, 359 (2003).

    Article  CAS  Google Scholar 

  34. C. Wu, M. Chen, T. Zheng, and X. Yang, Biomed. Mater. Eng., 26, S155 (2015).

    Google Scholar 

  35. K. Seunarine, A. S. G. Curtis, D. O. Meredith, C. D. W. Wilkinson, M. O. Riehle, and N. Gadegaard, IEEE Trans. Nanobioscience, 8, 219 (2009).

    Article  CAS  Google Scholar 

  36. H. Seonwoo, W. G. Bae, S. Park, H. N. Kim, K. S. Choi, K. T. Lim, H. Hyun, J. W. Kim, J. Kim, and J. H. Chung, IEEE Trans. Nanobioscience, 15, 835 (2016).

    Article  Google Scholar 

  37. J. Y. Lim and H. J. Donahue, Tissue Eng., 13, 1879 (2007).

    Article  CAS  Google Scholar 

  38. A. I. Teixeira, G. A. Abrams, P. J. Bertics, C. J. Murphy, and P. F. Nealey, J. Cell Sci., 116, 1881 (2003).

    Article  CAS  Google Scholar 

  39. V. Hasirci and B. J. P. Mooney, Nanomedicine, 7, 1375 (2012).

    Article  CAS  Google Scholar 

  40. L. Wang, M.-W. Chang, Z. Ahmad, H. Zheng, and J.-S. Li, Chem. Eng. J., 307, 661 (2017).

    Article  CAS  Google Scholar 

  41. M. Li, Y.-Z. Long, D. Yang, J. Sun, H. Yin, Z. Zhao, W. Kong, X. Jiang, and Z. Fan, J. Mater. Chem., 21, 13159 (2011).

    Article  CAS  Google Scholar 

  42. A. Gupta and P. Kumar, Plast. Aesthet. Res., 2, 239 (2015).

    Article  Google Scholar 

  43. K. S. Brandenburg, D. F. Calderon, P. R. Kierski, C. J. Czuprynski, and J. F. McAnulty, Microb. Pathog., 122, 30 (2018).

    Article  CAS  Google Scholar 

  44. Y. J. Liu, J. Tan, S.-Y. Yu, M. Yousefzadeh, T.-T. Lyu, Z.-W. Jiao, H.-Y. Li, and S. Ramakrishna, J. Appl. Polym. Sci., 137, 48299 (2019).

    Article  Google Scholar 

  45. M. A. Woodruff and D. W. Hutmacher, Prog. Polym. Sci., 35, 1217 (2010).

    Article  CAS  Google Scholar 

  46. N. Narayanan, L. Kuang, M. Del Ponte, C. Chain, and M. Deng in “Nanocomposites for Musculoskeletal Tissue Regeneration” (H. Liu Ed.), p.3, Woodhead Publishing, Oxford, 2016.

  47. M. Chen, P. K. Patra, S. B. Warner, and S. Bhowmick, Tissue Eng., 13, 579 (2007).

    Article  CAS  Google Scholar 

  48. A. C. Lloyd, Cell, 154, 1194 (2013).

    Article  CAS  Google Scholar 

  49. P. Echave, I. J. Conlon, and A. C. Lloyd, Cell Cycle, 6, 218 (2007).

    Article  CAS  Google Scholar 

  50. X. Liu and G. Jia, J. Mater. Sci. Eng., 7, 1000454 (2018).

    Google Scholar 

  51. L. G. Mobarakeh, M. P. Prabhakaran, M. Morshed, M.-H. N. Esfahani, and S. Ramakrishna, Biomaterials, 29, 4532 (2008).

    Article  Google Scholar 

  52. N. A. Norzain, Z.-W. Yu, W.-C. Lin, and H.-H. Su, Polymers, 13, 2821 (2021).

    Article  CAS  Google Scholar 

  53. S. F. Castillejo, P. Formentín, Ú. Catalán, J. Pallarès, L. F. Marsal, and R. Solà, Beilstein J. Nanotechnol., 8, 675 (2017).

    Article  Google Scholar 

  54. P. Zorlutuna, N. Builles, O. Damour, A. Elsheikh, and V. Hasirci, Biomaterials, 28, 3489 (2007).

    Article  CAS  Google Scholar 

  55. C.-H. Choi, S. H. Hagvall, B. M. Wu, J. C. Y. Dunn, R. E. Beygui, and C.-J. Kim, Biomaterials, 28, 1672 (2007).

    Article  CAS  Google Scholar 

  56. S. Ahn, H. A. M. Ardoña, P. H. Campbell, G. M. Gonzalez, and K. K. Parker, ACS Appl. Mater. Interfaces, 11, 33535 (2019).

    Article  CAS  Google Scholar 

  57. M. R. Badrossamay, K. Balachandran, A. K. Capulli, H. M. Golecki, A. Agarwal, J. A. Goss, H. Kim, K. Shin, and K. K. Parker, Biomaterials, 35, 3188 (2014).

    Article  CAS  Google Scholar 

  58. J. W. Kim, M. J. Kim, C. S. Ki, H. J. Kim, and Y. H. Park, Int. J. Biol. Macromol., 105, 541 (2017).

    Article  CAS  Google Scholar 

  59. S. Fahimirad, H. Abtahi, P. Satei, E. G. Rad, M. Moslehi, and A. Ganji, Carbohydr. Polym., 259, 117640 (2021).

    Article  CAS  Google Scholar 

  60. Z. Li, S. Mei, Y. Dong, F. She, and L. Kong, Polymers, 11, 1550 (2019).

    Article  CAS  Google Scholar 

  61. S. L. Levengood, A. E. Erickson, F.-C. Chang, and M. Zhang, J. Mater. Chem. B, 5, 1822 (2017).

    Article  CAS  Google Scholar 

  62. X. Chen, B. Feng, D.-Q. Zhu, Y.-W. Chen, W. Ji, T.-J. Ji, and F. Li, Int. J. Nanomedicine, 14, 3669 (2019).

    Article  CAS  Google Scholar 

  63. K. Kalantari, E. Mostafavi, A. M. Afifi, Z. Izadiyan, H. Jahangirian, R. Rafiee-Moghaddam, and T. J. Webster, Nanoscale, 12, 2268 (2020).

    Article  CAS  Google Scholar 

  64. Q. Zeng, Y. Qian, Y. Huang, F. Ding, X. Qi, and J. Shen, Bioact. Mater., 6, 2647 (2021).

    Article  CAS  Google Scholar 

  65. M. M. Mihai, M. B. Dima, B. Dima, and A. M. Holban, Materials, 12, 2176 (2019).

    Article  CAS  Google Scholar 

  66. Y. Wu, Z. Dong, S. Wilson, and R. L. Clark, Polymer, 51, 3244 (2010).

    Article  CAS  Google Scholar 

  67. Y. M. Shin, H. J. Shin, Y. Heo, I. Jun, Y.-W. Chung, K. Kim, Y. M. Lim, H. Jeon, and H. Shin, J. Mater. Chem. B, 5, 318 (2017).

    Article  CAS  Google Scholar 

  68. M. Kakunuri, N. D. Wanasekara, C. S. Sharma, M. Khandelwal, and S. J. Eichhorn, J. Appl. Polym. Sci., 134, 44709 (2017).

    Article  Google Scholar 

  69. S.-C. Wong, A. Baji, and S. Leng, Polymer, 49, 4713 (2008).

    Article  CAS  Google Scholar 

  70. S. Ahn, C. O. Chantre, A. R. Gannon, J. U. Lind, P. H. Campbell, T. Grevesse, B. B. O’Connor, and K. K. K. Parker, Adv. Healthc. Mater., 7, 1701175 (2018).

    Article  Google Scholar 

  71. S. R. Gomes, G. Rodrigues, G. G. Martins, M. A. Roberto, M. Mafra, C. M. R. Henriques, and J. C. Silva, Mater. Sci. Eng. C, 46, 348 (2015).

    Article  CAS  Google Scholar 

  72. X. Qi, W. Pan, X. Tong, T. Gao, Y. Xiang, S. You, R. Mao, J. Chi, R. Hu, W. Zhang, H. Deng, and J. Shen, Carbohydr. Polym., 264, 118046 (2021).

    Article  CAS  Google Scholar 

  73. M. Zhang, Y. Huang, W. Pan, X. Tong, Q. Zeng, T. Su, X. Qi, and J. Shen, Carbohydr. Polym., 253, 117213 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a research grant from the Ministry of Science and Technology (MOST109-2221-E-110-023). The authors appreciatively acknowledge the assistance of the animal experiments from Prof. Wen, National Sun Yat-sen University, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Chih Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norzain, N.A., Lin, WC. & Razali, N.A.M. Triangular-prism Microstructure Engineered on the Fibrous Scaffold Using Electro-centrifugal Spinning Technique for Tissue Engineering. Fibers Polym 23, 3398–3414 (2022). https://doi.org/10.1007/s12221-022-4756-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4756-1

Keywords

Navigation