Skip to main content
Log in

An Eco-friendly Route to Prepare Cellulose Based Multifunctional Lyocell Fabrics Using Zinc Oxide and Cellulose Nanofibrils Network

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Inspired by functioned textile materials, in this research a one-step technique is implemented for the preparation of super antibacterial and ultra-voilet (UV) blocking surface properties of lyocell fabrics by a specific amount of zinc oxide nanoparticles (ZnONPs) and various fractions of cellulose nanofibrils (CNF). The combination of cellulose nanofibrils and zinc oxide nanoparticles caused a transformation of pristine lyocell fabric into functional fabric by enhancing its mechanical, antibacterial, and ultra-voilet blocking properties. In the first portion of this research cellulose nanofirbils were extracted from a cellulose rich biomass Ficus natalensis barkcloth through chemical treatments and catalytic oxidation of cellulose using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) combined with mechanical homogenization. Secondly coating of cellulose nanofibrils and zinc oxide nanoparticles was done on lyocell fabrics. Based on the morphological analysis, equal distribution of CNF andf ZnONPs on the lyocell fabrics’ surfaces was tremendously improved leading to a much more uniform rough structure. However, with the increase of cellulose nanofibrils content, coating was unsmooth and crackes on the fabric surface were cleared due to accumulation of CNF at higher concentration. Results demonstrated an obvious increase of mechanical properties of lyocell fabrics with the addition of cellulose nanofibrils till 0.5 wt%. Similarly washing fastness studies showed that the fabric UV blocking properties were stable, whereas antibacterial characteristics of lyocell fabrics were significantly increased after CNF and zinc oxide nanoparticles coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ma, C. Burger, B. S. Hsiao, and B. Chu, Biomacromolecules, 12, 970 (2011).

    Article  CAS  Google Scholar 

  2. N. Mengal, U. Syed, S. A. Malik, I. A. Sahitoa, and S. H. Jeong, Carbohydr. Polym., 153, 78 (2016).

    Article  CAS  Google Scholar 

  3. R. Ibbett, H. Owens, R. Reisel, and A. H. M. Renfrew, Color, 2, 123 (2009).

    Article  Google Scholar 

  4. B. Siroka, M. Noisternig, U. J. Griesser, and T. Bechtold, Carbohydr. Res., 343, 2194 (2008).

    Article  CAS  Google Scholar 

  5. T. H. Mokhothu and M. J. John, Carbohydr. Polym., 131, 337 (2015).

    Article  CAS  Google Scholar 

  6. L. Cai, Y. Peng, J. Xu, C. Zhou, C. Zhou, P. Wu, D. Lin, S. Fan, and Y. Cui, Joule, 3, 1478 (2019).

    Article  CAS  Google Scholar 

  7. M. I. Tendo, W. Hua, and J. Sun, Eur. J. Wood Wood Prod., 77, 483 (2019).

    Article  Google Scholar 

  8. S. Rwawiire, B. Tomkova, J. Militky, L. Hes, and B. M. Kale, Appl. Acoust., 116, 177 (2017).

    Article  Google Scholar 

  9. P. Chen, H. Wang, M. He, B. Chen, B. Yang, and B. Hu, Ecotoxicol. Environ. Saf., 171, 337 (2019).

    Article  CAS  Google Scholar 

  10. R. B. d’Água, R. Branquinho, M. P. Duarte, E. Maurício, A. L. Fernando, R. Martins, and E. Fortunato, New J. Chem., 42, 1052 (2018).

    Article  Google Scholar 

  11. B. Butola, A. Garg, A. Garg, and I. Chauhan, J. Inst. Eng. India Ser. E, 99, 93 (2018).

    Article  CAS  Google Scholar 

  12. Y. Y. Chu, Z. Guo, Q. Wang, and S. Z. Cui, Adv. Mat. Res., 441, 266 (2012).

    CAS  Google Scholar 

  13. M. E. El-Naggar, T. I. Shaheen, S. Zaghloul, M. H. El-Rafie, and A. Hebeish, Indus. Eng. Chem. Res., 55, 2661 (2016).

    Article  CAS  Google Scholar 

  14. E. Pakdel, W. A. Daoud, T. Afrin, L. Sun, and X. Wang, Cellulose, 24, 4003 (2017).

    Article  CAS  Google Scholar 

  15. N. A. Ibrahim, A. A. Aly, B. M. Eid, and H. M. Fahmy, Fiber. Polym., 19, 2298 (2018).

    Article  CAS  Google Scholar 

  16. E. S. Ates and H. E. Unalan, Thin Solid Films, 14, 4658 (2012).

    Article  Google Scholar 

  17. S. Azizi, M. Ahmad, N. Ibrahim, M. Hussein, and F. Namvar, Int. J. Mol. Sci., 15, 11040 (2014).

    Article  CAS  Google Scholar 

  18. H. Liu, J. Song, S. Shang, Z. Song, and D. Wang, ACS Appl. Mater. Interfaces, 4, 2413 (2012).

    Article  CAS  Google Scholar 

  19. H. M. Ng, L. T. Sin, T. T. Tee, S. T. Bee, D. Hui, C. Y. Low, and A. R. Rahmat, Compos., 15, 176 (2015).

    Google Scholar 

  20. A. Farooq, S. Jiang, A. Farooq, M. A. Naeem, A. Ahmad, and L. Liu, J. Ind. Text., 51, 664 (2019).

    Article  Google Scholar 

  21. M. Li, A. Farooq, S. Jiang, M. Zhang, H. Mussana, and L. Liu, Text. Res. J., 91, 2303 (2021).

    Article  CAS  Google Scholar 

  22. T. Saito and A. Isogai, Biomacromolecules, 5, 1983 (2004).

    Article  CAS  Google Scholar 

  23. G. L. Devnani and S. Sinha, Compos. Pt. B-Eng., 166, 436 (2019).

    Article  CAS  Google Scholar 

  24. D. Haldar and M. K. Purkait, Carbohydr. Polym., 250, 116937 (2020).

    Article  CAS  Google Scholar 

  25. H. Jakob, P. Fratzl, and S. Tschegg, J. Struct. Biol., 113, 13 (1994).

    Article  Google Scholar 

  26. A. De Nooy, A. C. Besemer, H. Van Bekkum, J. Van Dijk, and J. Smit, Macromolecules, 29, 6541 (1996).

    Article  CAS  Google Scholar 

  27. Y.-R. Zhang, J.-T. Chen, B. Hao, R. Wang, and P.-C. Ma, Carbohydr. Polym., 240, 116318 (2020).

    Article  CAS  Google Scholar 

  28. T. Yi, H. Zhao, Q. Mo, D. Pan, Y. Liu, L. Huang, H. Xu, B. Hu, and H. Song, Materials, 22, 5062 (2020).

    Article  Google Scholar 

  29. X. Yang, Y. Zhao, H. Mussana, M. Tessema, and L. Liu, Mater. Lett., 211, 300 (2018).

    Article  CAS  Google Scholar 

  30. R. Faisal, N. Sanbhal, T. Naveed, A. Farooq, Y. Wang, and W. Wei, Cellulose, 25, 4251 (2018).

    Article  Google Scholar 

  31. A. Becheri, M. Dürr, P. L. Nostro, and P. Baglioni, J. Nanopart. Res., 10, 679 (2008).

    Article  CAS  Google Scholar 

  32. A. A. Tayel, W. F. E-Tras, S. Moussa, A. F. E-Baz, H. Mahrous, M. F. Salem, and L. Brimer, J. Food Saf., 31, 211 (2011).

    Article  CAS  Google Scholar 

  33. K. Lefatshe, C. M. Muiva, and L. P. Kebaabetswe, Carbohydr. Polym., 164, 301 (2017).

    Article  CAS  Google Scholar 

  34. S. Anitha, B. Brabu, D. J. Thiruvadigal, C. Gopalakrishnan, and T. Natarajan, Carbohydr. Polym., 87, 1065 (2012).

    Article  CAS  Google Scholar 

  35. C. A. Ghiorghita, F. Bucatariu, and E. S. Dragan, Mater. Sci. Eng. C, 105, 110050 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

For this research paper, publication, and authorship, the authors reveal the receipt of the following financial support. The work was completely supported by “National Key R&D Program of China (2018YFC2000900)” and “Fundamental Research Funds for the Central Universities” (2232018A3-04)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifang Liu.

Supplementary data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, A., Patoary, M.K., Zhao, Y. et al. An Eco-friendly Route to Prepare Cellulose Based Multifunctional Lyocell Fabrics Using Zinc Oxide and Cellulose Nanofibrils Network. Fibers Polym 23, 1275–1283 (2022). https://doi.org/10.1007/s12221-022-4733-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4733-8

Keywords

Navigation