Skip to main content
Log in

Fabrication and Characterization of a Novel Wound Dressing with Clindamycin Loaded PVA Nanoparticles for Acne Treatment

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Acne vulgaris is the most common skin disorder that may cause constant scarring on the face. Conventional methods for acne treatment have various side effects such as inflammation, dryness, peeling, cutaneous irritation and scaling of the skin. The novel wound dressing coated with nanoparticles containing drug was fabricated as a drug delivery system for acne treatment. In this present, Polyvinyl alcohol (PVA) nanoparticles containing clindamycin were successfully prepared by the electrospraying method and coated on the surface of cotton fabric. The final drug loaded nanoparticles were characterized using Field-emission scanning electron microscope (FE-SEM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), Differential scanning calorimeter (DSC) and biodegradation. The increasing clindamycin concentration in electrospraying solution led to reverse effects on the viscosity, electrical conductivity and affect on the diameter of nanoparticles. At various concentrations of clindamycin, spherical nanoparticles with uniform size were formed from PVA solution. Also, drug release rate was investigated using both in vitro dissolution and permeation methods during 720 min. Fractional release curves obtained exhibited short term release of clindamycin within first 60 min and slower release rate until 720 min. The release rate of clindamycin was higher from PVA nanoparticles containing 10 % W/W drug than those loaded with 5 % W/W drug. Release plots were analyzed based on Korsmeyer-Peppas model, suggesting Fickian diffusion as the dominant clindamycin release mechanism from the PVA nanoparticles. Moreover, the drug release profile of PVA nanoparticles coated cotton fabric was found to be lower than that for the drug loaded nanoparticles. This study suggests wound dressing coated with PVA nanoparticles as a novel drug delivery vehicle for short term administration of clindamycin for treatment of acne scars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Goodarzi, S. Mozafarpoor, M. Bodaghabadi, and M. Mohamadi, Dermatolo. Ther., 33, e13279 (2020).

    Article  CAS  Google Scholar 

  2. S. Sood, M. Jafferany, and S. Vinaya Kumar, J. Cosmet. Dermatol., 19, 3177 (2020).

    Article  Google Scholar 

  3. A. Otlewska, W. Baran, and A. Batycka-Baran, Expert Opin. Drug Saf., 19, 513 (2020).

    Article  CAS  Google Scholar 

  4. E. Bagatin and C. S. Costa, Expert Rev. Clin. Pharmacol., 13, 885 (2020).

    Article  CAS  Google Scholar 

  5. V. K. Emmerich, C. G. Purvis, and S. R. Feldman, Expert Opin. Pharmacother., 22, 1661 (2021).

    Article  CAS  Google Scholar 

  6. M. C. Marchitto, S. Kang, and A. L. Chien, “Acne”, pp.4554, Springer, 2021.

  7. M. A. Kayiran, A. S. Karadag, S. Al-Khuzaei, W. Chen, and L. C. Parish, Am. J. Clin. Dermatol., 21, 813 (2020).

    Article  Google Scholar 

  8. A. A. H. Abdellatif and H. M. Tawfeek, AAPS PharmSciTech, 17, 1067 (2016).

    Article  CAS  Google Scholar 

  9. N. Fatima, S. Rehman, B. Nabi, S. Baboota, and J. Ali, J. Drug. Deliv. Sci. Tec., 54, 101253 (2019).

    Article  CAS  Google Scholar 

  10. M. Kilicarslan, M. Ilhan, O. Inal, and K. Orhan, Eur. J. Pharm. Sci., 123, 441 (2018).

    Article  CAS  Google Scholar 

  11. F. Salahpour-Anarjan, P. Nezhad-Mokhtari, and A. Akbarzadeh, “Modeling and Control of Drug Delivery Systems”, p.29, Elsevier, 2021.

  12. W. Mu, Q. Chu, Y. Liu, and N. Zhang, Nano-micro. Lett., 12, 142 (2020).

    Article  CAS  Google Scholar 

  13. J. Jacob, J. T. Haponiuk, S. Thomas, and S. Gopi, Mater. Today Chem., 9, 43 (2018).

    Article  CAS  Google Scholar 

  14. Y. K. Sung and S. W. Kim, Biomater. Res., 24, 12 (2020).

    Article  CAS  Google Scholar 

  15. A. Í. S. Morais, E. G. Vieira, S. Afewerki, R. B. Sousa, L. M.C. Honorio, A. N. C. O. Cambrussi, J. A. Santos, R. D. S. Bezerra, J. A. O. Furtini, E. C. Silva-Filho, T. J. Webster, and A. O. Lobo, J. Funct. Biomater., 11, 4 (2020).

    Article  CAS  Google Scholar 

  16. M. Asadi, M. Salami, M. Hajikhani, Z. Emam-Djomeh, A. Aghakhani, and A. Ghasemi, Food Biophys., 16, 15 (2021).

    Article  Google Scholar 

  17. R. Ghaffarzadegan, S. Khoee, and S. Rezazadeh, J. Pharm. Sci., 28, 237 (2020).

    CAS  Google Scholar 

  18. M. Mandegari, L. Ghasemi-Mobarakeh, and M. Zamani, Polym. Adv. Technol., 30, 2381 (2019).

    Article  CAS  Google Scholar 

  19. B. Felice, M. P. Prabhakaran, M. Zamani, A. P. Rodríguez, and S. Ramakrishna, Polym. Int., 64, 1722 (2015).

    Article  CAS  Google Scholar 

  20. S. Si, H. Li, and X. Han, J. Drug Deliv. Sci. Technol., 55, 101422 (2020).

    Article  CAS  Google Scholar 

  21. S. Kang, Y. He, D.-G. Yu, W. Li, and K. Wang, Colloids Surf. B Biointerfaces, 201, 111629 (2021).

    Article  CAS  Google Scholar 

  22. J. Hou, Y. Yang, D.-G. Yu, Z. Chen, K. Wang, Y. Liu, and G. R. Williams, Chem. Eng. J., 411, 128474 (2021).

    Article  CAS  Google Scholar 

  23. S. H. Ranganath, I. Kee, W. B. Krantz, P. K.-H. Chow, and C.-H. Wang, Pharm. Res., 26, 2101 (2009).

    Article  CAS  Google Scholar 

  24. J. Xie, J. C. Tan, and C.-H. Wang, J. Pharm. Sci., 97, 3109 (2008).

    Article  CAS  Google Scholar 

  25. M. A. Teixeira, M. T. P. Amorim, and H. P. Felgueiras, Polymers, 12, 7 (2020).

    Article  CAS  Google Scholar 

  26. K. Kalantari, E. Mostafavi, B. Saleh, P. Soltantabar, and T. J. Webster, Eur. Polym. J., 134, 109853 (2020).

    Article  CAS  Google Scholar 

  27. S. A. Shah, M. Sohail, S. A. Khan, and M. Kousar, Mater. Sci. Eng. C, 126, 112169 (2021).

    Article  CAS  Google Scholar 

  28. P. Vashisth, K. Nikhil, P. Roy, P. A. Pruthi, R. P. Singh, and V. Pruthi, Carbohydr. Polym., 136, 851 (2016).

    Article  CAS  Google Scholar 

  29. R. E. Esfahani, P. Zahedi, and R. Zarghami, Iran. Polym. J., 30, 167 (2021).

    Article  CAS  Google Scholar 

  30. J. O. Kim, J. Y. Choi, J. K. Park, J. H. Kim, S. G. Jin, S. W. Chang, D. X. Li, M.-R. Hwang, J. S. Woo, and J.-A. Kim, Biol. Pharm. Bull., 31, 2277 (2008).

    Article  CAS  Google Scholar 

  31. M. Vukomanović, S. D. Skapin, B. Jančar, T. Maksin, N. Ignjatović, V. Uskoković, and D. Uskoković, Colloids Surf. B Biointerfaces, 82, 404 (2011).

    Article  Google Scholar 

  32. M. Abbaspour, B. S. Makhmalzadeh, Z. Arastoo, A. Jahangiri, and R. Shiralipour, Trop. J. Pharm. Res., 12, 477 (2013).

    Google Scholar 

  33. V. Uskoković and T. A. Desai, Mater. Sci. Eng., C, 37, 210 (2014).

    Article  Google Scholar 

  34. M. P. Cavalcante, A. L. Toledo, E. J. Rodrigues, R. P. Neto, and M. I. Tavares, Polym. Test., 58, 159 (2017).

    Article  CAS  Google Scholar 

  35. V. Sessini, I. Navarro-Baena, M. P. Arrieta, F. Dominici, D. López, L. Torre, J. M. Kenny, P. Dubois, J.-M. Raquez, and L. Peponi, Polym. Degrad. Stab., 152, 126 (2018).

    Article  CAS  Google Scholar 

  36. J. L. Dávila, M. S. Freitas, P. Inforçatti Neto, Z. C. Silveira, J. V. L. Silva, and M. A. d’Ávila, J. Appl. Polym. Sci., 133, 43031 (2016).

    Article  Google Scholar 

  37. N. A. Peppas and P. J. Hansen, J. Appl. Polym. Sci., 27, 4787 (1982).

    Article  CAS  Google Scholar 

  38. M. Zamani, M. P. Prabhakaran, E. San Thian, and S. Ramakrishna, Int. J. Pharm., 473, 134 (2014).

    Article  CAS  Google Scholar 

  39. M. M. Rad, S. N. Khorasani, L. Ghasemi-Mobarakeh, M. P. Prabhakaran, M. R. Foroughi, M. Kharaziha, N. Saadatkish, and S. Ramakrishna, Mater. Sci. Eng. C, 80, 75 (2017).

    Article  Google Scholar 

  40. M. P. Prabhakaran, M. Zamani, B. Felice, and S. Ramakrishna, Mater. Sci. Eng. C, 56, 66 (2015).

    Article  CAS  Google Scholar 

  41. F. Haghiralsadat, G. Amoabediny, M. N. Helder, S. Naderinezhad, M. H. Sheikhha, T. Forouzanfar, and B. Zandieh-doulabi, Artif. Cells, Nanomed., Biotechnol., 46, 169 (2018).

    Article  CAS  Google Scholar 

  42. N. T. Pandya, P. Jani, J. Vanza, and H. Tandel, Colloids Surf. B Biointerfaces, 165, 37 (2018).

    Article  CAS  Google Scholar 

  43. D. Cosco, R. Mare, D. Paolino, M. C. Salvatici, F. Cilurzo, and M. Fresta, Int. J. Biol. Macromol., 132, 550 (2019).

    Article  CAS  Google Scholar 

  44. Y. Esparza, A. Ullah, Y. Boluk, and J. Wu, Mater. Des., 133, 1 (2017).

    Article  CAS  Google Scholar 

  45. M. Zamani, M. Morshed, J. Varshosaz, and M. Jannesari, Eur. J. Pharm. Biopharm., 75, 179 (2010).

    Article  CAS  Google Scholar 

  46. N. Bock, T. R. Dargaville, and M. A. Woodruff, Prog. Polym. Sci., 37, 1510 (2012).

    Article  CAS  Google Scholar 

  47. Y. Xu, M. Skotak, and M. Hanna, J. Microencapsulation, 23, 69 (2006).

    Article  CAS  Google Scholar 

  48. M. T. Khorasani, A. Joorabloo, A. Moghaddam, H. Shamsi, and Z. MansooriMoghadam, Int. J. Biol. Macromol., 114, 1203 (2018).

    Article  CAS  Google Scholar 

  49. S. Ullah, M. Hashmi, N. Hussain, A. Ullah, M. N. Sarwar, Y. Saito, S. H. Kim, and I. S. Kim, J. Water Process Eng., 33, 101111 (2020).

    Article  Google Scholar 

  50. V. A. Pereira Jr, I. N. Q. de Arruda, and R. Stefani, Food Hydrocoll., 43, 180 (2015).

    Article  CAS  Google Scholar 

  51. S. Rezaee and M. R. Moghbeli, Iran J. Chem. Eng., 11, 45 (2014).

    Google Scholar 

  52. A. Karczewski, S. A. Feitosa, E. I. Hamer, D. Pankajakshan, R. L. Gregory, K. J. Spolnik, and M. C. Bottino, J. Endod., 44, 155 (2018).

    Article  Google Scholar 

  53. F.-X. Xu, X. Zhang, F. Zhang, L.-Q. Jiang, Z.-L. Zhao, and H.-B. Li, Fuel, 268, 117365 (2020).

    Article  CAS  Google Scholar 

  54. F. Agrebi, N. Ghorbel, S. Bresson, O. Abbas, and A. Kallel, Polym. Compos., 40, 2076 (2019).

    Article  CAS  Google Scholar 

  55. A. A. Menazea, A. M. Mostafa, and E. A. Al-Ashkar, J. Mol. Struct., 1203, 127374 (2020).

    Article  CAS  Google Scholar 

  56. C. Shuai, Z. Mao, H. Lu, Y. Nie, H. Hu, and S. Peng, Biofabrication, 5, 015014 (2013).

    Article  CAS  Google Scholar 

  57. Y. Ran, W. Dong, S. Wu, J. Wang, and J. Gong, Org. Process Res. Dev., 17, 1445 (2013).

    Article  CAS  Google Scholar 

  58. M. Kilicarslan, M. Gumustas, S. Yildiz, and T. Baykara, Curr. Drug Deliv., 11, 98 (2014).

    Article  CAS  Google Scholar 

  59. B. B. Mandal, B. Ghosh, and S. Kundu, Int. J. Biol. Macromol., 49, 125 (2011).

    Article  CAS  Google Scholar 

  60. A. H. A. Wahab, A. P. M. Saad, M. N. Harun, A. Syahrom, M. H. Ramlee, M. A. Sulong, and M. R. A. Kadir, J. Mech. Behav. Biomed. Mater., 91, 406 (2019).

    Article  Google Scholar 

  61. Y. Xu, Y. Xu, C. Sun, L. Zou, and J. He, Eur. Polym. J., 133, 109768 (2020).

    Article  CAS  Google Scholar 

  62. M. Zamani, M. Morshed, J. Varshosaz, and M. Jannesari, Eur. J. Pharm. Biopharm., 75, 179 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laleh Ghasemi-Mobarakeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandegari, M., Ghasemi-Mobarakeh, L. & Varshosaz, J. Fabrication and Characterization of a Novel Wound Dressing with Clindamycin Loaded PVA Nanoparticles for Acne Treatment. Fibers Polym 23, 3369–3379 (2022). https://doi.org/10.1007/s12221-022-4605-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4605-2

Keywords

Navigation