Skip to main content
Log in

Evaluation and Analysis of Fracture Modes in Single Composite Basalt/Epoxy Fibres by Photoelastic Method and Single Fibre Fragmentation Test

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this work, the suitability of basalt fibres for uni-directional composite material applications, and adhesion between the fibres and the matrix they are embedded in have been investigated. A single fibre fragmentation test was carried out on 13 µm diameter basalt fibres embedded in a dog-bone epoxy matrix. Photoelastic analysis was used to observe different fracture mechanisms in a single fibre composite sample and fibre breaks during testing. A theoretical model based on a Griffith’s fracture mechanics approach was used to determine the fibre-matrix interfacial shear strength, which is a measurement of the level of adhesion between the fibre and the matrix. It was also used to predict the fibre fragment axial stress and the fragment interfacial shear stress, both as functions of axial position on the fibre. A finite element model was developed to simulate the fibre fracture process, and the redistribution of stresses in the fibre and the local region surrounding a fibre break. The developed experimental procedure was successful in that stress-induced birefringence was observed in the tested samples, as well as the characteristic shear stress light fringes that occur in the regions surrounding fibre fractures. Also, there were some similarities between the finite element model results and the theoretical predictions. The critical fibre length, lc was measured as 0.752 mm, whereas this value was calculated 0.6708 mm from finite element predicted interfacial shear stress distribution for fibre fragment. A combination of all three types of failure modes was recorded across the samples that were tested, while only a single failure mode was observed in the finite element model. According to the theoretical model, for a given set of parameters and constant stress with only the fibre length varying, the axial stress in the fibre reduces as the fibre gets smaller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Hatami, M. R. Ayatollahi, and A. R. Torabi, Eur. J. Mech. A Solids, 85, 104089 (2021).

    Article  Google Scholar 

  2. S. Feih, K. Wonsyld, D. Minzari, and P. Westermann, “Testing Procedure for the Single Fiber Fragmentation Test”, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, Denmark, 2004.

    Google Scholar 

  3. D. Tripathi and F. R. Jones, J. Mater. Sci, 33, 1 (1998).

    Article  CAS  Google Scholar 

  4. X. Wang, B. Zhang, S. Du, Y. Wu, and X. Sun, Mater. Des., 31, 2464 (2010).

    Article  CAS  Google Scholar 

  5. F. P. Van der Meer, S. Raijmaekers, and I. B. C. M. Rocha, Compos. Part A Appl. Sci. Manuf., 118, 259 (2019).

    Article  CAS  Google Scholar 

  6. B. F. Sørensen, Mech. Mater., 104, 38 (2017).

    Article  Google Scholar 

  7. F. Stojcevski, T. B. Hilditch, and L. C. Henderson, Compos. Part A Appl. Sci. Manuf., 118, 293 (2019).

    Article  CAS  Google Scholar 

  8. L. Humbert, F. Colpo, and J. Botsis, Eur. J. Mech. A Solids, 28, 257 (2009).

    Article  Google Scholar 

  9. M. Kant and D. Penumadu, Compos. Sci. Technol., 89, 83 (2013).

    Article  CAS  Google Scholar 

  10. X. Sun, Z. Gao, P. Cao, and C. Zhou, Consr. Build. Mater., 202, 58 (2019).

    Article  Google Scholar 

  11. F. Sarasini, J. Tirillò, and M. C. Seghini, Compos. B. Eng., 132, 77 (2018).

    Article  CAS  Google Scholar 

  12. K. Singha, Int. J. Text. Soi., 1, 19 (2012).

    Google Scholar 

  13. A. Ross, “Basalt Fibers: Alternative to Glass?”, https://www.compositesworld.com/articles/basalt-fibers-alternative-to-glass (Accessed February 15, 2021).

  14. Y. Meng, J. Liu, Y. Xia, W. Liang, Q. Ran, and Z. Xie, Ceram. Int., 47, 12410 (2021).

    Article  CAS  Google Scholar 

  15. S. Sabet, F. Akhlaghi, and R. Eslami Farsani, J. Ceram. Soi. Teohnol, 6, 245 (2015).

    Google Scholar 

  16. R. Eslami-Farsani, M. R. Khalili, and M. Najafi, J. Therm. Stresses, 36, 684 (2013).

    Article  Google Scholar 

  17. F. Akhlaghi, R. Eslami-Farsani, and S. M. M. Sabet, J. Compos. Mater., 47, 3379 (2013).

    Article  CAS  Google Scholar 

  18. M. J. Rich, L. T. Drzal, D. L. Hunston, G. A. Holmes, and W. G. McDonough, “Round Robin Assessment of the Single Fiber Fragmentation Test”, Proceedings of the American Society for Composites 17th Technical Conference, West Lafayette, IN, 2002.

  19. D. L. Hunston, W. G. McDonough, G. A. Holmes, and R. Parnas, “Test Protocol for Single-Fiber Fragmentation Test”, http://www.hunstonscientific.com/index_htm_files/InterfaceRR.pdf (Accessed February 12, 2021).

  20. A. Awal, G. Cescutti, S. B. Ghosh, and J. Müssig, Compos. Part A Appl. Soi. Manuf., 42, 50 (2011).

    Article  Google Scholar 

  21. L. Zhou, J. K. Kim, C. Baillie, and Y. W. Mai, J. Compos. Mater., 29, 881 (1995).

    Article  CAS  Google Scholar 

  22. S. Deng, L. Ye, Y. W. Mai, and H. Y. Liu, Compos. Part A Appl. Soi. Manuf., 29, 423 (1998).

    Article  Google Scholar 

  23. T. Ohsawa, A. Nakayama, M. Miwa, and A. Hasegawa, J. Appl. Polym. Soi., 22, 3203 (1978).

    Article  CAS  Google Scholar 

  24. E. Yongsung, B. Louis, M. Véronique, S. Paul, and M. Jan-Anders, Polym. Eng. Soi, 41, 492 (2004).

    Google Scholar 

  25. D. Tripathi, A. Kettle, N. Lopattananon, A. Beck, and F. R. Jones, “Interface Molecular Engineering of Carbon-fiber Composites”, Proceedings of the 11th International Conference on Composite Materials, Gold Coast, Australia, 1997.

  26. R. Gill, “Igneous Rocks and Processes: A Practical Guide”, 2nd ed. pp.20–64, Wiley-Blackwell, Oxford, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pouyan Ghabezi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thornton, E., Ghabezi, P., Ralph, C. et al. Evaluation and Analysis of Fracture Modes in Single Composite Basalt/Epoxy Fibres by Photoelastic Method and Single Fibre Fragmentation Test. Fibers Polym 23, 1396–1409 (2022). https://doi.org/10.1007/s12221-022-4597-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4597-y

Keywords

Navigation