Skip to main content
Log in

Effect of PEG Molecular Weight and Volume Ratio of Chitosan/PEG and Silk Fibroin on Physicomechanical Properties of Chitosan/PEG-SF Scaffold as a Bio-mimetic Substrate in Skin-tissue Engineering Applications

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Tissue engineering provides new approaches to improve skin lesions. However, cell differentiation onto the engineered substrate with the skin-like pattern is the main challenge. Here we have tried to fabricate such the substrate via studying the change in polymers ratios and molecular weight, and grafting scaffold with silk fibroin (SF) biomaterial. To this end, chitosan and PEG were mixed at the volume ratios of 25:75, 50:50, and 65:35, and samples were lyophilized by the freeze-drying method. Based on the result, the ratio of 65:35 indicated better physicomechanical properties than two other scaffolds. Afterward, Chi/PEG scaffolds were prepared via mixing chitosan/PEG with (65:35) and PEG molecular weights of 2000, 4000, 6000, 10000 Da. It was found that the increase of PEG molecular weight (>4000) was led to the reduction in tensile strength and elongation of the scaffold network. Hence, PEG4000 was selected as the optimum molecular weight to design SF-grafted Chi/PEG scaffold. Therefore, Chi/PEG4000-SF scaffold was designed to evaluate the volume ratio of SF (1 %, 3 %, 5 %) and compare data with the decellularized dermis. The results showed Chi/PEG4000-SF(3%) scaffold not only was led to the same elongation as Chi/PEG-SF(5%) scaffold but also created the dermis-like modulus. Moreover, Chi/PEG-SF provided higher expression level of keratinocytes (bio-mimetic pattern) than decellularized dermis due to better physicomechanical properties. Hence, it seems that engineered scaffolds can be a more suitable option than native tissue (due to removal of limitations such as donor sites and immunogenicity, and their mechanical properties). This study can provide novel insight into the better design of skin-engineered scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Zarrintaj, S. Manouchehri, Z. Ahmadi, M. R. Saeb, A. M. Urbanska, D. L. Kaplan, and M. Mozafari, Carbohydr. Polym., 187, 66 (2018).

    Article  CAS  Google Scholar 

  2. M. Horst, D. Eberli, R. Gobet, and S. Salemi, Front. Pediatr., 7, 91 (2019).

    Article  Google Scholar 

  3. A. Izadyari Aghmiuni, S. Heidari Keshel, F. Sefat, and A. AkbarzadehKhiyavi, Mater. Sci. Eng. C., 120, 111752 (2021).

    Article  CAS  Google Scholar 

  4. A. I. Aghmiuni, M. S. Baei, S. H. Keshel, and A. A. Khiyavi, Fiber. Polym., 21, 33 (2020).

    Article  CAS  Google Scholar 

  5. B. S. Kim, Y. W. Kwon, J. S. Kong, G. T. Park, G. Gao, W. Han, M. B. Kim, H. Lee, J. H. Kim, and D. W. Cho, Biomaterials, 168, 38 (2018).

    Article  CAS  Google Scholar 

  6. V. Andreu, G. Mendoza, M. Arruebo, and S. Irusta, Materials, 8, 5154 (2015).

    Article  Google Scholar 

  7. Y. Xu, D. Xia, J. Han, S. Yuan, H. Lin, and C. Zhao, Carbohydr. Polym., 177, 210 (2017).

    Article  CAS  Google Scholar 

  8. F. Khan, M. Tanaka, and S. R. Ahmad, J. Mater. Chem. B., 3, 8224 (2015).

    Article  CAS  Google Scholar 

  9. F. Khan and M. Tanaka, Int. J. Mol. Sci., 19, 17 (2017).

    Article  Google Scholar 

  10. Ö. S. Somuncu, C. Karahan, S. Somuncu, and F. Şahin in “Stem Cells in Clinical Practice and Tissue Engineering” (R. Sharma Ed.), pp.315–333, IntechOpen, Rijeka, https://doi.org/10.5772/intechopen.69905, 2018.

  11. T. Du, Z. Chen, H. Li, X. Tang, Z. Li, J. Guan, C. Liu, Z. Du, and J. Wu, Int. J. Biol. Macromol., 82, 580 (2016).

    Article  CAS  Google Scholar 

  12. X. Liu, N. Dan, W. Dan, and J. Gong, Int. J. Biol. Macromol., 82, 989 (2016).

    Article  CAS  Google Scholar 

  13. J. M. Chalovich and E. Eisenberg, Sci. China Chem., 57, 490 (2014).

    Article  Google Scholar 

  14. S.-H. Chen, C.-T. Tsao, C.-H. Chang, Y.-T. Lai, M.-F. Wu, C.-N. Chuang, H.-C. Chou, C.-K. Wang, and K.-H. Hsieh, Mater. Sci. Eng. C., 33, 2584 (2013).

    Article  CAS  Google Scholar 

  15. B. Kundu, R. Rajkhowa, S. C. Kundu, and X. Wang, Adv. Drug Deliv. Rev., 65, 457 (2013).

    Article  CAS  Google Scholar 

  16. T. W. Chung and Y. L. Chang, J. Mater. Sci. Mater. Med., 21, 1343 (2010).

    Article  CAS  Google Scholar 

  17. A. Izadyari Aghmiuni, S. Heidari Keshel, F. Sefat, and A. Akbarzadeh Khiyavi, Int. J. Biol. Macromol., 142, 668 (2020).

    Article  CAS  Google Scholar 

  18. G. Guasch, “Biology and Engineering of Stem Cell Niches”, pp.127–143, Academic Press, 2017.

  19. E. B. Lane and W. H. I. McLean, J. Pathol., 204, 355 (2004).

    Article  CAS  Google Scholar 

  20. F. Wang, A. Zieman, and P. A. Coulombe, Methods Enzymol., 568, 303 (2016).

    Article  CAS  Google Scholar 

  21. S. P. Huang, C. C. Hsu, S. C. Chang, C. H. Wang, S. C. Deng, N. T. Dai, T. M. Chen, J. Y. H. Chan, S. G. Chen, and S. M. Huang, Ann. Plast. Surg., 69, 656 (2012).

    Article  CAS  Google Scholar 

  22. W. K. Ong and S. Sugii, Int. J. Biochem. Cell Biol., 45, 1083 (2013).

    Article  CAS  Google Scholar 

  23. L. Frese, P. E. Dijkman, and S. P. Hoerstrup, Transfus. Med. Hemotherapy, 43, 268 (2016).

    Article  Google Scholar 

  24. A. Sterodimas, J. de Faria, B. Nicaretta, and I. Pitanguy, J. Plast. Reconstr. Aesthetic Surg., 63, 1886 (2010).

    Article  Google Scholar 

  25. W. W. Thein-Han and R. D. K. Misra, Acta Biomater., 5, 1182 (2009).

    Article  CAS  Google Scholar 

  26. J. Venkatesan, I. Bhatnagar, and S. K. Kim, Mar. Drugs., 12, 300 (2014).

    Article  CAS  Google Scholar 

  27. D. Atila, D. Keskin, and A. Tezcaner, Carbohydr. Polym., 133, 251 (2015).

    Article  CAS  Google Scholar 

  28. X. Zhao, X. Sun, L. Yildirimer, Q. Lang, Z. Y. (William) Lin, R. Zheng, Y. Zhang, W. Cui, N. Annabi, and A. Khademhosseini, Acta Biomater., 49, 66 (2017).

    Article  CAS  Google Scholar 

  29. M. Rodríguez-Vázquez, B. Vega-Ruiz, R. Ramos-Zúñiga, D. A. Saldaña-Koppel, and L. F. Quiñones-Olvera, Biomed Res. Int., 2015, 821279 (2015).

    Article  Google Scholar 

  30. X. Li, R. You, Z. Luo, G. Chen, and M. Li, J. Mater. Chem. B., 4, 2903 (2016).

    Article  CAS  Google Scholar 

  31. A. K. Ekaputra, G. D. Prestwich, S. M. Cool, and D. W. Hutmacher, Biomacromolecules, 9, 2097 (2008).

    Article  CAS  Google Scholar 

  32. A. Szentivanyi, T. Chakradeo, H. Zernetsch, and B. Glasmacher, Adv. Drug Deliv. Rev., 63, 209 (2011).

    Article  CAS  Google Scholar 

  33. H. I. Chang and Y. Wang, “Regenerative Medicine and Tissue Engineering — Cells and Biomaterials”, pp.569–588, InTechOpen, 2011.

  34. K. Vig, A. Chaudhari, S. Tripathi, S. Dixit, R. Sahu, S. Pillai, V. Dennis, and S. Singh, Int. J. Mol. Sci., 18, 789 (2017).

    Article  Google Scholar 

  35. Y. Liu, H. Luo, X. Wang, A. Takemura, Y. R. Fang, Y. Jin, and F. Suwa, Biomed Res. Int., 2013, 561410 (2013).

    Google Scholar 

  36. K. Boehnke, N. Mirancea, A. Pavesio, N. E. Fusenig, P. Boukamp, and H. J. Stark, Eur. J. Cell Biol., 86, 731 (2007).

    Article  CAS  Google Scholar 

  37. Y. Wu, L. Chen, P. G. Scott, and E. E. Tredget, Stem Cells., 25, 2648 (2007).

    Article  CAS  Google Scholar 

  38. H. Alam, L. Sehgal, S. T. Kundu, S. N. Dalal, and M. M. Vaidya, Mol. Biol. Cell., 22, 4068 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the help provided by the School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences to finalize this project with ethics code IR.SBMU.REC.1398.069.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Azadeh Izadyari Aghmiuni or Saeed Heidari Keshel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghmiuni, A.I., Keshel, S.H., Rezaei-tavirani, M. et al. Effect of PEG Molecular Weight and Volume Ratio of Chitosan/PEG and Silk Fibroin on Physicomechanical Properties of Chitosan/PEG-SF Scaffold as a Bio-mimetic Substrate in Skin-tissue Engineering Applications. Fibers Polym 23, 3358–3368 (2022). https://doi.org/10.1007/s12221-022-4579-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4579-0

Keywords

Navigation