Skip to main content

Preparation of Layered Aramid Nanomembranes by Vacuum Assisted Filtration Using Water and Ethanol as Proton Donors

Abstract

In this paper, two kinds of proton donors, including water and ethanol, are introduced to prepare aramid nanofibers (ANFs) films. The formation mechanism of ANFs films and the influence of water and ethanol have been investigated. The main formation mechanism was demonstrated that ANFs could self-assemble into layered structure during the filtration process. The results showed that the ANFs films with water as proton donor had a tensile strength of 186.01 MPa and initial thermal decomposition temperature of 503.89 °C, which was 52.68 % and 11.79 % higher than those of the films prepared with ethanol as proton donor. Meanwhile, compared with spin coating and layer by layer self-assembly methods, vacuum assisted filtration was proved as an effective method to prepare the functional ANFs nanomembranes with highly regular and layered structures.

This is a preview of subscription content, access via your institution.

References

  1. P. Zhang, C. L. Shao, Z. Y. Zhang, M. Y. Zhang, J. B. Mu, Z. C. Guo, and Y. C. Liu, Nanoscale, 3, 3357 (2011).

    CAS  Article  Google Scholar 

  2. D. T. Zhang, L. X. Meng, Q. Xu, S. Bai, Z. Yang, and Y. Qin, Mater. Lett., 98, 153 (2013).

    CAS  Article  Google Scholar 

  3. B. Yang, M. Y. Zhang, Z. Q. Lu, J. J. Tan, J. J. Luo, S. X. Song, X. Y. Ding, L. Wang, P. Lu, and Q. Y. Zhang, Carbohydr. Polym., 208, 372 (2019).

    CAS  Article  Google Scholar 

  4. J. Zhou, Q. Cai, X. Liu, Y. Ding, and F. Xu, Nanoscale Res. Lett., 13, 384 (2018).

    Article  Google Scholar 

  5. J. Yao, J. H. Jin, E. Lepore, N. M. Pugno, C. W. M. Bastiaansen, and T. Peijs, Macromol. Mater. Eng., 300, 1238 (2015).

    CAS  Article  Google Scholar 

  6. S. Ifuku, H. Maeta, H. Izawa, M. Morimoto, and H. Saimoto, RSC Adv., 4, 40377 (2014).

    CAS  Article  Google Scholar 

  7. R. N. Wijesena, N. Tissera, Y. Y. Kannangara, Y. Lin, G. A. J. Amaratunga, and K. M. N. de Silva, Carbohydr. Polym., 117, 731 (2015).

    CAS  Article  Google Scholar 

  8. F. C. Kramer, R. Shang, S. G. J. Heijman, S. M. Scherrenberg, J. B. van Lier, and L. C. Rietveld, Sep. Purif. Technol., 147, 329 (2015).

    CAS  Article  Google Scholar 

  9. S. Peldszus, J. Benecke, M. Jekel, and P. M. Huck, J. Am. Water Work Assoc., 104, 45 (2012).

    CAS  Google Scholar 

  10. B. Yang, X. Y. Ding, M. Y. Zhang, L. Wang, and X. Huang, Compos. Commun., 17, 192 (2020).

    Article  Google Scholar 

  11. S. F. Bartolucci, K. E. Supan, J. S. Wiggins, L. LaBeaud, and J. M. Warrender, Polym. Degrad. Stab., 98, 2497 (2013).

    CAS  Article  Google Scholar 

  12. A. J. Jose, M. Alagar, and A. S. Aprem, Int. J. Polym. Mater., 61, 544 (2012).

    CAS  Article  Google Scholar 

  13. D. Ahuja, L. Kumar, and A. Kaushik, Carbohydr. Polym., 255, 117466 (2021).

    CAS  Article  Google Scholar 

  14. W. Chen, C. Qi, Y. Li, and H. Tao, Radiat. Phys. Chem., 180, 109239 (2021).

    CAS  Article  Google Scholar 

  15. H. C. Yan, J. L. Li, W. T. Tian, L. Y. He, X. L. Tuo, and T. Qiu, RSC Adv., 6, 26599 (2016).

    CAS  Article  Google Scholar 

  16. S. R. Kwon, J. Harris, T. Y. Zhou, D. Loufakis, J. G. Boyd, and J. L. Lutkenhaus, ACS Nano, 11, 6682 (2017).

    CAS  Article  Google Scholar 

  17. B. Yang, L. Wang, M. Zhang, J. Luo, Z. Lu, and X. Ding, Adv. Funct. Mater., 30, 2000186 (2020).

    CAS  Article  Google Scholar 

  18. J. J. Lin, S. H. Bang, M. H. Malakooti, and H. A. Sodano, ACS Appl. Mater. Interfaces, 9, 11167 (2017).

    CAS  Article  Google Scholar 

  19. C. X. Nie, Y. Yang, Z. H. Peng, C. Cheng, L. Ma, and C. S. Zhao, J. Membr. Sci., 528, 251 (2017).

    CAS  Article  Google Scholar 

  20. Y. S. Zhao, W. B. Dang, Z. Q. Lu, L. M. Wang, L. M. Si, and M. Y. Zhang, Polym. Int., 67, 204 (2018).

    CAS  Article  Google Scholar 

  21. Z. Q. Lu, L. M. Si, W. B. Dang, and Y. S. Zhao, Compos. Pt. A-Appl. Sci. Manuf., 115, 321 (2018).

    CAS  Article  Google Scholar 

  22. B. Yang, M. Y. Zhang, Z. Q. Lu, J. J. Luo, S. X. Song, and Q. Y. Zhang, ACS Sustain. Chem. Eng., 6, 8954 (2018).

    CAS  Article  Google Scholar 

  23. Y. S. Park, J. W. Lee, Y. S. Nam, and W. H. Park, J. Appl. Polym. Sci., 132, 41545 (2015).

    Article  Google Scholar 

  24. J. Lyu, L. H. Liu, X. Zhao, Y. D. Shang, T. K. Zhao, and T. H. Li, J. Mater. Eng. Perform., 25, 4757 (2016).

    Article  Google Scholar 

  25. M. Yang, K. Q. Cao, L. Sui, Y. Qi, J. Zhu, A. Waas, E. M. Arruda, J. Kieffer, M. D. Thouless, and N. A. Kotov, ACS Nano, 5, 6945 (2011).

    CAS  Article  Google Scholar 

  26. F. Wang, Y. D. Wu, and Y. D. Huang, Compos. Pt. A-Appl. Sci. Manuf., 110, 126 (2018).

    CAS  Article  Google Scholar 

  27. H. L. Guo, J. Zheng, J. Q. Gan, L. Y. Liang, K. Wu, and M. G. Lu, RSC Adv., 5, 88014 (2015).

    CAS  Article  Google Scholar 

  28. C. X. Wang, M. Du, J. C. Lv, Q. Q. Zhou, Y. Ren, G. L. Liu, D. W. Gao, and L. M. Jin, Appl. Surf. Sci., 349, 333 (2015).

    CAS  Article  Google Scholar 

  29. K. Sato, H. Horibe, T. Shirai, Y. Hotta, H. Nakano, H. Nagai, K. Mitsuishi, and K. Watari, J. Mater. Chem., 20, 2749 (2010).

    CAS  Article  Google Scholar 

  30. P. Kumar, S. Yu, F. Shahzad, S. M. Hong, Y. H. Kim, and C. M. Koo, Carbon, 101, 120 (2016).

    CAS  Article  Google Scholar 

  31. F. Wang, Y. D. Wu, and Y. D. Huang, Compos. Pt. A-Appl. Sci. Manuf., 110, 154 (2018).

    CAS  Article  Google Scholar 

  32. L. W. Huang and J. R. McCutcheon, J. Membr. Sci., 457, 162 (2014).

    CAS  Article  Google Scholar 

  33. M. Taylor, A. J. Urquhart, M. Zelzer, M. C. Davies, and M. R. Alexander, Langmuir., 23, 6875 (2007).

    CAS  Article  Google Scholar 

  34. N. Giovambattista, P. G. Debenedetti, and P. J. Rossky, J. Phys. Chem. B., 111, 9581 (2007).

    CAS  Article  Google Scholar 

  35. J. Huang, Z. Lu, J. Li, D. Ning, Z. Jin, Q. Ma, L. Hua, E. Songfeng, and M. Zhang, Carbohydr. Polym., 255, 117330 (2021).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Guizhou Province “100-level” Innovative Talents Project, Qianke Union platform talent (NO. [2016] 5653) and the Natural Science Foundation of China (51563002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengjun Lu or Haosen Fan.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, K., Gu, X., Guo, M. et al. Preparation of Layered Aramid Nanomembranes by Vacuum Assisted Filtration Using Water and Ethanol as Proton Donors. Fibers Polym 23, 1817–1825 (2022). https://doi.org/10.1007/s12221-022-4578-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4578-1

Keywords

  • Aramid nanofibers
  • Nanomembrane
  • Vacuum assisted filtration
  • Layered structure
  • Mechanical properties