Skip to main content
Log in

Tailoring the Rheology of Shear Thickening Fluids by Regulating the Particle Size of Dispersed Phase for Enhancing the Impact Resistance of Aramid Fabrics

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Rheological behaviour of shear thickening fluid (STF) is influenced by particle size, particle shape, concentration of particles etc. This study deals with the effect of particle size and its distribution on the rheological behaviour of STFs and ensuing impact resistance of Kevlar® fabrics treated with them. Synthesis of submicron sized silica particles of three different sizes was carried out by following the Stöber method. Corresponding STFs consisting of 67 % silica particles were prepared and their rheological behaviour was evaluated. Decrease in particle size coupled with particle size uniformity significantly contributes to enhancement in dilatancy of STFs. Further, Kevlar® fabric was impregnated with these STFs for assessing their impact resistance performance. Fabric impregnated with STF prepared from the finest and uniform silica particles, having the highest peak viscosity, exhibited the best impact resistance performance among all STF impregnated fabrics. These findings show that the particle size and its distribution decisively influence the thickening behaviour of STF which in turn plays a critical role in determining the impact energy absorption by high-performance fabrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gameiro, A. Singh, L. Kondic, K. Mischaikow, and J. F. Morris, Phys. Rev. Fluids, 5, 034307 (2020).

    Article  Google Scholar 

  2. S. Gürgen and M. A. Sofuoğlu, J. Manuf. Process, 56, 1146 (2020).

    Article  Google Scholar 

  3. S. Gürgen and M. A. Sofuoglu, Compos. Struct., 226, 111236 (2019).

    Article  Google Scholar 

  4. S. Gürgen and M. A. Sofuoglu, Compos. Part B Eng., 186, 107831 (2020).

    Article  Google Scholar 

  5. S. Gürgen and A. Sert, Compos. Part B Eng., 175, 107127 (2019).

    Article  Google Scholar 

  6. Y. S. Lee, E. D. Wetzel, and N. J. Wagner, J. Mater. Sci., 38, 2825 (2003).

    Article  CAS  Google Scholar 

  7. T.-T. Li, W. Dai, L. Wu, H.-K. Peng, X. Zhang, B.-C. Shiu, J.-H. Lin, and C.-W. Lou, Fiber. Polym., 20, 328 (2019).

    Article  CAS  Google Scholar 

  8. X. Zhang, T.-T. Li, H.-K. Peng, Z. Wang, J. Huo, C.-W. Lou, and J.-H. Lin, Fiber. Polym., 21, 1515 (2020).

    Article  CAS  Google Scholar 

  9. U. Mawkhlieng, A. Majumdar, and D. Bhattacharjee, Fiber. Polym., 22, 213 (2021).

    Article  CAS  Google Scholar 

  10. U. Mawkhlieng and A. Majumdar, Compos. Part B Eng., 175, 107167 (2019).

    Article  CAS  Google Scholar 

  11. A. Ghosh, A. Majumdar, and B. S. Butola, Thin-Walled Struct., 155, 106954 (2020).

    Article  Google Scholar 

  12. R. Bai, Y. Ma, Z. Lei, Y. Feng, and C. Liu, Compos. Part B Eng., 174, 106901 (2019).

    Article  Google Scholar 

  13. M. Hasanzadeh, V. Mottaghitalab, M. Rezaei, and H. Babaei, Thin-Walled Struct., 119, 700 (2017).

    Article  Google Scholar 

  14. S. Gürgen, M. C. Kushan, and W. Li, Prog. Polym. Sci., 75, 48 (2017).

    Article  Google Scholar 

  15. Y.-F. Lee, Y. Luo, S. C. Brown, and N. J. Wagner, J. Rheol., 64, 267 (2020).

    Article  CAS  Google Scholar 

  16. H. A. Barnes, J. Rheol., 33, 329 (1989).

    Article  CAS  Google Scholar 

  17. B.-W. Lee, I.-J. Kim, and C.-G. Kim, J. Compos. Mater., 43, 2679 (2009).

    Article  CAS  Google Scholar 

  18. S. Li, J. Wang, S. Zhao, W. Cai, Z. Wang, and S. Wang, J. Mater. Sci. Technol., 33, 261 (2017).

    Article  CAS  Google Scholar 

  19. N. Asija, H. Chouhan, and N. Bhatnagar, ISME J. Manuf. Sci., 6, 9 (2017).

    Google Scholar 

  20. I. Wagstaff and C. E. Chaffey, J. Colloid Interface Sci., 59, 53 (1977).

    Article  CAS  Google Scholar 

  21. M. Bajya, A. Majumdar, B. S. Butola, S. K. Verma, and D. Bhattacharjee, Compos. Part B Eng., 183, 107721 (2020).

    Article  CAS  Google Scholar 

  22. L. Liu, Z. Yang, Z. Zhao, X. Liu, and W. Chen, Thin-Walled Struct., 151, 106717 (2020).

    Article  Google Scholar 

  23. K. Fu, H. Wang, Y. X. Zhang, L. Ye, J. P. Escobedo, P. J. Hazell, K. Friedrich, and S. Dai, Int. J. Impact Eng., 139, 103525 (2020).

    Article  Google Scholar 

  24. Y. Park, Y. Kim, A. H. Baluch, and C.-G. Kim, Int. J. Impact Eng., 72, 67 (2014).

    Article  Google Scholar 

  25. X. D. Wang, Z. X. Shen, T. Sang, X. Bin Cheng, M. F. Li, L. Y. Chen, and Z. S. Wang, J. Colloid Interface Sci., 341, 23 (2010).

    Article  CAS  Google Scholar 

  26. K. Talreja, I. Chauhan, A. Ghosh, A. Majumdar, and B. S. Butola, RSC Adv., 7, 49787 (2017).

    Article  CAS  Google Scholar 

  27. P. E. Imoisili, K. O. Ukoba, and T. C. Jen, J. Mater. Res. Technol., 9, 307 (2020).

    Article  CAS  Google Scholar 

  28. M. A. Bourebrab, D. T. Oben, G. G. Durand, P. G. Taylor, J. I. Bruce, A. R. Bassindale, and A. Taylor, J. Sol-Gel Sci. Technol., 88, 430 (2018).

    Article  CAS  Google Scholar 

  29. M. Kaszuba, D. McKnight, M. T. Connah, F. K. McNeil-Watson, and U. Nobbmann, J. Nanoparticle Res., 10, 823 (2007).

    Article  Google Scholar 

  30. H. Udono, K. Uruga, T. Tsukada, and M. Sakai, Powder Technol., 361, 203 (2020).

    Article  CAS  Google Scholar 

  31. F. J. Galindo-Rosales and F. J. Rubio-Hernández in “Numerical Simulations — Examples and Applications in Computational Fluid Dynamics” (L. Angermann Ed.), IntechOpen, Rijeka, Croatia, https://www.intechopen.com/chapters/12611, pp.3–22, 2010.

  32. S. Gürgen and R. J. A. de Sousa, Arch. Civ. Mech. Eng., 20, 1 (2020).

    Article  Google Scholar 

  33. S. Gürgen, J. Nano Res., 56, 63 (2019).

    Article  Google Scholar 

  34. S. Arora, A. Majumdar, and B. S. Butola, Compos. Struct., 233, 111720 (2020).

    Article  Google Scholar 

  35. M. Wei, L. Sun, and J. Zhu, Mater. Des., 196, 109078 (2020).

    Article  CAS  Google Scholar 

  36. A. Majumdar, B. S. Butola, and A. Srivastava, Mater. Des., 51, 148 (2013).

    Article  CAS  Google Scholar 

  37. P. Dixit, A. Ghosh, and A. Majumdar, J. Mater. Sci., 54, 13106 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The research was financed by Defence Research and Development Organisation (DRDO), India (Project No. ST-13/TBR-1298).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupendra Singh Butola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talreja, K., Ghosh, A., Arora, S. et al. Tailoring the Rheology of Shear Thickening Fluids by Regulating the Particle Size of Dispersed Phase for Enhancing the Impact Resistance of Aramid Fabrics. Fibers Polym 23, 1300–1308 (2022). https://doi.org/10.1007/s12221-022-4138-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4138-8

Keywords

Navigation