Skip to main content
Log in

Moisture-Induced Reversible Softening of Polyacrylates-Stiffened Cotton Fabrics

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The stiffening finishing of cotton fabrics has been widely used in textile industry. However, the notorious softening of stiffened fabrics attenuated the stiffening style during storage. To reveal crucial factors responsible for the softening phenomenon and elucidate the mechanism, cotton twill woven fabrics finished with polyacrylates (PAcr) stiffening agents were systematically analyzed. The sensitive index to stiffening effect, i.e. stiffness value, was found which can fully assess the handle changes of stiffened fabrics. The stiffness value of stiffened cotton fabrics decreased rapidly in the initial stage of storage, and the declining extent was related to the hygroscopic behavior of stiffened fabrics. Based on the hygroscopic kinetic data, hygroscopic-drying cyclic experiments, and morphology characterization, it was found that interfaces between cotton fibers and stiffening agent film were maintained during the whole hygroscopic process, and the reason for handle changes of stiffened cotton fabrics was ascribed to the reversible moisture-induced plasticization effect on PAcr stiffening agent film and cotton fibers. Furthermore, the underlying softening mechanism was further proposed in this work. Collectively, the present results are crucial for anti-softening in stiffening finishing of hydrophilic fabrics and an important part for the research on the mechanism of softening of stiffened fabrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Patil and A. N. Netravali, Ind. Eng. Chem. Res., 58, 20496 (2019).

    Article  CAS  Google Scholar 

  2. M. M. Bashar and M. A. Khan, J. Polym. Environ., 21, 181 (2013).

    Article  CAS  Google Scholar 

  3. Z. L. Fei, B. J. Liu, M. F. Zhu, W. Wang, and D. Yu, Cellulose, 25, 3179 (2018).

    Article  CAS  Google Scholar 

  4. C. Huang, N. Zhang, Q. Wang, P. Wang, Y. Y. Yu, and M. Zhou, Prog. Org. Coat., 151, 106042 (2021).

    Article  CAS  Google Scholar 

  5. H. E. Nasr, S. M. Sayyah, D. M. Essa, S. H. Samaha, and A. M. Rabie, Carbohydr. Polym., 76, 36 (2009).

    Article  CAS  Google Scholar 

  6. A. F. Moustafa, J. Appl. Polym. Sci., 102, 852 (2006).

    Article  CAS  Google Scholar 

  7. W. Hu, G. X. Zhang, S. Y. Chen, F. X. Zhang, D. Y. Wu, and H. Zheng, Appl. Mech. Mater., 1867, 864 (2012).

    Article  CAS  Google Scholar 

  8. S. M. Mortazavi and P. E. Boukany, Iran Polym. J., 13, 213 (2004).

    CAS  Google Scholar 

  9. W. Xu, Q. F. An, L. F. Hao, Z. Sun, and W. J. Zhao, Fiber. Polym., 14, 895 (2013).

    Article  CAS  Google Scholar 

  10. X. D. Zhou, M. Jiang, H. Yi, and T. Y. Zhang, Textile Aux., 26, 30 (2009).

    CAS  Google Scholar 

  11. F. Xu, Y. L. Yang, G. X. Zhang, F. X. Zhang, and Y. S. Zhang, Cellulose, 22, 2837 (2015).

    Article  CAS  Google Scholar 

  12. Y. Jung, T. Kim, and C. R. Park, Carbon, 88, 60 (2015).

    Article  CAS  Google Scholar 

  13. D. Nabi Saheb and J. P. Jog, Adv. Polym. Tech., 18, 351 (1999).

    Article  Google Scholar 

  14. X. Li, G. Lope Tabil, and P. Satyanarayan, J. Polym. Environ., 15, 25 (2007).

    Article  CAS  Google Scholar 

  15. Ö. Ceylan, L. V. Landuyt, F. Meulewaeter, and K. D. Clerck, Cellulose, 19, 1517 (2012).

    Article  CAS  Google Scholar 

  16. Ö. Ceylan, F. Goubet, and K. De Clerck, Cellulose, 21, 1149 (2014).

    CAS  Google Scholar 

  17. P. Ayaz, J. Li, W. H. Jin, and M. B. Ma, Fiber. Polym., 21, 548 (2020).

    Article  CAS  Google Scholar 

  18. C. W. Kan and T. C. Lau, Fiber. Polym., 19, 2203 (2018).

    Article  CAS  Google Scholar 

  19. Y. Q. Li, Y. Zhang, C. Zou, and J. Z. Shao, Appl. Surf. Sci., 357, 2327 (2015).

    Article  CAS  Google Scholar 

  20. F. X. Sun, M. R. Guo, X. R. Hu, L. Wang, and W. D. Gao, Text. Res. J., 89, 2973 (2018).

    Article  CAS  Google Scholar 

  21. N. Pan, C. W. Li, and J. Xu, Fibers, 7, 70 (2019).

    Article  CAS  Google Scholar 

  22. N. Pan, Int. J. Des. Nat., 1, 48 (2006).

    Google Scholar 

  23. N. Pan, K. C. Yen, S. J. Zhao, and S. R. Yang, Text. Res. J., 58, 438 (1988).

    Article  Google Scholar 

  24. J. O. Kim and B. L. Slaten, Text. Res. J., 69, 59 (1999).

    Article  CAS  Google Scholar 

  25. N. A. Ibrahim, M. H. Abo-Shosha, H. M. Fahmy, Z. M. EI-sayed, and A. A. Hebeish, J. Mater. Process. Technol., 200, 385 (2008).

    Article  CAS  Google Scholar 

  26. N. M. Guo, Q. F. An, J. Xiong, L. X. Huang, and J. Y. Pan, Textile Aux., 29, 25 (2012).

    CAS  Google Scholar 

  27. D. M. Sun and G. K. Stylios, Fiber. Polym., 13, 1050 (2012).

    Article  CAS  Google Scholar 

  28. Y. X. Li, D. Z. Chen, X. X. Cheng, F. Gao, X. B. Yang, Y. F. Mi, Q. B. Zhou, S. X. Lan, and Z. H. Cao, J. Appl. Polym. Sci., 137, 49316 (2020).

    Article  CAS  Google Scholar 

  29. N. A. Ibrahim, A. Amr, B. M. Eid, Z. E. Mohamed, and H. M. Fahmy, Carbohydr. Polym., 89, 648 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. H. F. Feng, Y. F. Wu, X. M. Feng, L. Zhong, F. X. Zhang, and G. X. Zhang, Text. Res. J., 88, 873 (2017).

    Article  CAS  Google Scholar 

  31. X. Liu, L. J. Wang, and X. G. Wang, Text. Res. J., 74, 353 (2004).

    Google Scholar 

  32. S. J. Peng, X. L. Liu, J. Sun, Z. Q. Gao, L. Yao, and Y. P. Qiu, Appl. Surf. Sci., 256, 4103 (2010).

    Article  CAS  Google Scholar 

  33. H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, Compos. Part B, 42, 856 (2011).

    Article  CAS  Google Scholar 

  34. S. Azizian, J. Colloid Interface Sci., 276, 47 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. A. Célino, S. Fréour, F. Jacquemin, and P. Casari, Front Chem., 1, 43 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. H. N. Dhakal, Z. Y. Zhang, and M. O. W. Richardson, Compos. Sci. Technol., 67, 1674 (2007).

    Article  CAS  Google Scholar 

  37. K. L. Pickering, M. G. Aruan Efendy, and T. M. Le, Compos. Part A, 83, 98 (2016).

    Article  CAS  Google Scholar 

  38. Z. P. Mao, H. Yu, Y. F. Wang, L. P. Zhang, Y. Zhong, and H. Xu, Ind. Eng. Chem. Res., 53, 8927 (2014).

    Article  CAS  Google Scholar 

  39. C. L. Su, J. X. Fang, and X. Hong, Text. Res. J., 77, 64 (2014).

    Google Scholar 

  40. A. Athijayamani, M. Thiruchitrambalam, U. Natarajan, and B. Pazhanivel, Mater. Sci. Eng. A., 517, 344 (2009).

    Article  CAS  Google Scholar 

  41. I. Batool and G. B. Shah, Fiber. Polym., 19, 790 (2018).

    Article  CAS  Google Scholar 

  42. J. M. Lee, J. J. Pawlak, and J. A. Heitmann, Mater. Charact., 61, 507 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (NNSFC) project (51573168 and 21908200), the Natural Science Foundation of Guangdong Province (2019B030301003), the Key Research & Development program of Zhejiang Province (2021C03196), the Fundamental Research Funds of Zhejiang Sci-Tech University (18012218-Y), and National Undergraduate Training Programs for Innovation and Entrepreneurship of China (201910338041) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihai Cao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, Y., Wu, D., Li, Y. et al. Moisture-Induced Reversible Softening of Polyacrylates-Stiffened Cotton Fabrics. Fibers Polym 23, 1284–1292 (2022). https://doi.org/10.1007/s12221-022-4088-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-4088-1

Keywords

Navigation