Skip to main content
Log in

Electrospun Polyvinyl Alcohol Composite Nonwovens for Air Filtration Materials in the Humidity Environment

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Nanofibrous composite polyvinyl alcohol (PVA) nonwovens were prepared by the electrospinning of PVA on polyethylene terephthalate spunbond nonwoven for an air filter media. PVA nanofibers were insolubilized by annealing at 150–170°C for 10 minutes, using citric acid (CA) as a green crosslinking agent. The water stability of PVA nonwovens increased as the amount of CA or annealing temperature was increased. However, there were no significant changes in average fiber diameters, pore sizes, and filtration efficiencies depending on crosslinking conditions. Humidification resulted in the permanent deformation and the reduction of filtration performances. The amount of CA and annealing temperature had significant effects on the resistance to humidity. Composite PVA nonwovens including 12 wt% CA and annealed 160 °C or higher maintained the original filtration performance even after the humidification. Considering the filtration performances and the water- and moisture-resistance, crosslinked composite PVA nonwovens seemed to have the potential for air filtration materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Ding, Y. Li, Y. Si, X. Yin, J. Yu, and B. Ding, Compos. Commun., 13, 57 (2019).

    Article  Google Scholar 

  2. A. E. de Oliveira, M. L. Aguiar, and V. G. Guerra, Polym. Bull., doi:https://doi.org/10.1007/s00289-020-03431-w (2020).

  3. X. Li, W. Yang, H. Li, Y. Wang, M. M. Bubakir, Y. Ding, and Y. Zhang, J. Appl. Polym. Sci., 132, 41601 (2015).

    Google Scholar 

  4. Y. Liu, R. Wang, H. Ma, B. S. Hsiao, and B. Chu, Polymer (Guildf), 54, 548 (2013).

    Article  CAS  Google Scholar 

  5. S. Zhang, W. S. Shim, and J. Kim, Mater. Des., 30, 3659 (2009).

    Article  CAS  Google Scholar 

  6. Y. J. Ryu, H. Y. Kim, K. H. Lee, H. C. Park, and D. R. Lee, Eur. Polym. J., 39, 1883 (2003).

    Article  CAS  Google Scholar 

  7. Q. Wang, Y. Bai, J. Xie, Q. Jiang, and Y. Qiu, Powder Technol., 292, 54 (2016).

    Article  CAS  Google Scholar 

  8. H-J. Choi, M. Kumita, T. Seto, Y. Inui, L. Bao, T. Fujimoto, and Y. Otani, J. Aerosol Sci., 114, 244 (2017).

    Article  CAS  Google Scholar 

  9. L. Bao, K. Seki, H. Niinuma, Y. Otani, R. Balgis, T. Ogi, L. Gradon, and K. Okuyama, Sep. Purif. Technol., 159, 100 (2016).

    Article  CAS  Google Scholar 

  10. M. Li, J. Li, M. Zhou, Y. Xian, Y. Shui, M. Wu, and Y. Yao, J. Appl. Polym. Sci., 137, 48416 (2020).

    Article  CAS  Google Scholar 

  11. X. Miao, J. Lin, and F. Bian, J. Bioresour. Bioprod., 5, 26 (2020).

    Article  Google Scholar 

  12. P. Li, C. Wang, Y. Zhang, and F. Wei, Small, 10, 4543 (2014).

    Article  CAS  Google Scholar 

  13. X. Yu, C. Li, H. Tian, L. Yuan, A. Xiang, J. Li, C. Wang, and A. V. Rajulu, Chem. Eng. J., 396, 125373 (2020).

    Article  CAS  Google Scholar 

  14. K. Kim, C. Lee, I. W. Kim, and J. Kim, Fiber. Polym., 10, 60 (2009).

    Article  CAS  Google Scholar 

  15. Z. Tang, J. Wei, L. Yung, B. Ji, H. Ma, C. Qiu, K. Yoon, F. Wan, D. Fang, B. S. Hsiao, and B. Chu, J. Memb. Sci., 328, 1 (2009).

    Article  CAS  Google Scholar 

  16. M. R. Safaee-Ardakani, A. Hatamian-Zarmi, S. M. Sadat, Z. B. Mokhtari-Hosseini, B. Ebrahimi-Hosseinzadeh, H. Kooshki, and J. Rashidiani, Fiber. Polym., 20, 2493 (2019).

    Article  CAS  Google Scholar 

  17. D. Nataraj, R. Reddy, and N. Reddy, Eur. Polym. J., 124, 109484 (2020).

    Article  Google Scholar 

  18. N. Li, C. Xiao, S. An, and X. Hu, Desalination, 250, 530 (2010).

    Article  CAS  Google Scholar 

  19. H. Tian, L. Yuan, J. Wang, H. Wu, H. Wang, A. Xiang, B. Ashok, and A. V. Rajulu, J. Hazard. Mater., 378, 120751 (2019).

    Article  CAS  Google Scholar 

  20. J. Chen, Y. Li, Y. Zhang, and Y. Zhu, J. Appl. Polym. Sci., 132, 42000 (2015).

    Google Scholar 

  21. M. Krumova, D. López, R. Benavente, C. Mijangos, and J. M. Perena, Polymer (Guildf), 41, 9265 (2000).

    Article  CAS  Google Scholar 

  22. S. A. Stone, P. Gosavi, T. J. Athauda, and R. R. Ozer, Mater. Lett., 112, 32 (2013).

    Article  CAS  Google Scholar 

  23. A. López-Córdoba, G. R. Castro, and S. Goyanes, Mater. Sci. Eng. C, 69, 726 (2016).

    Article  Google Scholar 

  24. A. Ounkaew, P. Kasemsiri, K. Kamwilaisak, K. Saengprachatanarug, W. Mongkolthanaruk, M. Souvanh, U. Pongsa, and P. Chindaprasirt, J. Polym. Environ., 26, 3762 (2018).

    Article  CAS  Google Scholar 

  25. TEB-APR-STP-0059, Determination of Particulate Filter Efficiency Level for N95 Series Filters Against Solid Particulates for Non-powered, Air-purifying Respirators Standard Testing Procedure, NIOSH National Personal Protective Technology Laboratory, Pittsburgh, PA, 2019.

    Google Scholar 

  26. T. A. W. Wijanarko, A. Kusumaatmaja, Chotimah, Roto, and K. Triyana, AIP Conf. Proc., 1755, 150010 (2016).

    Article  Google Scholar 

  27. A. Çay and Mohsen Miraftab, J. Appl. Polym. Sci., 129, 3140 (2013).

    Article  Google Scholar 

  28. I. Hayati, A. I. Bailey, and T. F. Tadros, J. Colloid Interface Sci., 117, 205 (1987).

    Article  CAS  Google Scholar 

  29. W. K. Son, J. H. Youk, T. Seung Lee, and W. H. Park, Mater. Lett., 59, 1571 (2005).

    Article  CAS  Google Scholar 

  30. I. K. Valeeva and O. V. Kirichenko, Powder Metall. Met. Ceram., 58, 155 (2019).

    Article  CAS  Google Scholar 

  31. F. Chen, Z. Ji, and Q. Qi, Sep. Purif. Technol., 201, 71 (2018).

    Article  CAS  Google Scholar 

  32. W. Ma, P. Zhang, B. Zhao, S. Wang, J. Zhong, Z. Cao, C. Liu, F. Gong, and H. Matsuyama, J. Polym. Sci. Part B Polym. Phys., 57, 1673 (2019).

    Article  CAS  Google Scholar 

  33. Y. B. Truong, J. Choi, J. Mardel, Y. Gao, S. Maisch, M. Musameh, and I. L. Kyratzis, Macromol. Mater. Eng., 302, 1700024 (2017).

    Article  Google Scholar 

  34. M. Aliabadi, Chem. Ind. Chem. Eng. Q., 23, 441 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This study has been conducted with the support of the Korea Institute of Industrial Technology as “Development of fiber-based technology for reduction of hazardous substances in the air (KITECH EO-21-0001)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Nam Im.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, G., Doh, S.J., Kim, Y. et al. Electrospun Polyvinyl Alcohol Composite Nonwovens for Air Filtration Materials in the Humidity Environment. Fibers Polym 23, 690–698 (2022). https://doi.org/10.1007/s12221-022-3418-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-3418-7

Keywords

Navigation