Skip to main content
Log in

Impact Behavior of Shape Memory Alloy Hybrid Composites under Different Temperatures

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This paper focuses on the experimental investigation of glass-fiber-reinforced epoxy (GF/epoxy) composites embedded with shape memory alloy wires subjected to low-velocity impact loading at variable temperatures. The specimens manufactured by vacuum assisted resin infusion processing were tested at a temperature range of -50 °C to 60 °C under several impact energy levels (10, 15 and 20 J). The comparison curves of the impact parameters of both composites under different energy levels affected by temperature were given. The results show that the low-velocity impact behaviors of both composites increase with the decreasing of temperature. Compare with GF/epoxy composites, the impact resistance of SMAHC was improved most obviously at 25 °C. At this temperature, the maximum contact force of SMAHC is increased by 5.92 %, the displacement is decreased by 34.74 % and the energy is increased by 24.87 % at impact level 20 J. The failure modes of the SMAHC were revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, Mater. Des., 56, 1078 (2014).

    Google Scholar 

  2. Z. Q. Wang, Y. F. Liu, H. Q. Lv, and B. Yang, Polym. Compos., 39, 3040 (2018).

    Article  CAS  Google Scholar 

  3. K. W. Kang and J. K. Kim, Compos. Struct., 88, 455 (2009).

    Article  Google Scholar 

  4. W. Zhang, Z. X. Pan, R. K. Gideon, B. H. Gu, and B. Z. Sun, J. Compos. Mater., 49, 771 (2014).

    Article  Google Scholar 

  5. J. A. Artero-Guerrero, J. Pernas-Sánchez, J. López-Puente, and D. Varas, Compos. Struct., 133, 774 (2015).

    Article  Google Scholar 

  6. C. S. Kumar, V. Arumugam, H. N. Dhakal, and R. John, Compos. Struct., 125, 407 (2015).

    Article  Google Scholar 

  7. D. Garcia-Gonzalez, M. Rodriguez-Millan, A. Rusinek, and A. Arias, Compos. Struct., 134, 440 (2015).

    Article  Google Scholar 

  8. M. Sayer, N. B. Bektas, E. Demir, and H. Çallioglu, Compos. Part B, 43, 2152 (2012).

    Article  CAS  Google Scholar 

  9. R. Boominathan, V. Arumugam, C. A. Santulli, A. A. P. Sidharth, R. A. Sankar, and B. T. N. Sridhar, Compos. Part B 56, 591 (2014).

    Google Scholar 

  10. H. N. Dhakal, V. Arumugam, A. Aswinraj, C. Santulli, Z. Y. Zhang, and A. Lopez-Arraiza, Polym. Test, 35, 10 (2014).

    Article  CAS  Google Scholar 

  11. Y. F. Liu, Z. Q. Wang, H. Li, M. Sun, F. X. Wang, and B. J. Chen, Materials, 11, 70 (2018).

    Article  Google Scholar 

  12. Z. Q. Wang, Y. F. Liu, H. Li, and M. Sun, Compos. Interfaces, 25, 169 (2018).

    Article  CAS  Google Scholar 

  13. E. H. Kim, I. Lee, J. H. Roh, J. S. Bae, I. H. Choi, and K. N. Koo, Compos. Struct., 93, 2903 (2011).

    Article  Google Scholar 

  14. J. Aurrekoetxea, J. Zurbitu, I. O. D. Mendibil, A. Agirregomezkorta, M. Sánchez-Soto, and M. Sarrionandia, Mater. Lett., 65, 863 (2011).

    Article  CAS  Google Scholar 

  15. M. Meo, F. Marulo, M. Guida, and S. Russo, Compos. Struct., 95, 756 (2013).

    Article  Google Scholar 

  16. Y. C. Lin, Y. L. Chen, and H. W. Chen, J. Mech., 32, 565 (2016).

    Article  Google Scholar 

  17. S. M. R. Khalili and A. Ardali, Compos. Struct., 105, 216 (2013).

    Article  Google Scholar 

  18. Z. Q. Wang, L. D. Xu, X. Y. Sun, M. F. Shi, and J. B. Liu, Compos. Struct., 178, 311 (2017).

    Article  Google Scholar 

  19. L. D. Xu, M. F. Shi, X. Y. Sun, Z. Q. Wang, and B. Yang, Adv. Eng. Mater., 20, 1700646 (2018).

    Article  Google Scholar 

  20. B. Yang, Z. Wang, L. Zhou, J. F. Zhang, and W. Y. Liang, Compos. Struct., 132, 464 (2015).

    Article  Google Scholar 

  21. B. Yang, Z. Q. Wang, L. M. Zhou, J. F. Zhang, L. Y. Tong, and W. Y. Liang, Compos. Struct., 132, 1129 (2015).

    Article  Google Scholar 

  22. V. Demers, V. Brailovski, S. D. Prokoshkin, and K. E. Inaekyan, Mater. Sci. Eng.: A, 513-514, 185 (2009).

    Article  Google Scholar 

  23. M. Aktas, R. Karakuzu, and Y. Arman, Compos. Struct., 89, 77 (2009).

    Article  Google Scholar 

  24. K. W. Kang, T. J. Chung, and S. K. Koh, Int. J. Modern Phys. B, 24, 2657 (2010).

    Article  CAS  Google Scholar 

  25. A. Salehi-Khojin, R. Bashirzadeh, M. Mahinfalah, and R. Nakhaei-Jazar, Compos. Part B, 37, 593 (2006).

    Article  Google Scholar 

  26. H. S. Lei, Z. Q. Wang, B. Zhou, L. Y. Tong, and X. Q. Wang, Mater. Des., 40, 138 (2012).

    Article  CAS  Google Scholar 

  27. S. Pappada, R. Rametta, A. Largo, and A. Maffezzoli, Polym. Compos., 33, 655 (2012).

    Article  CAS  Google Scholar 

  28. M. Aktas, R. Karakuzu, and B. M. Icten, J. Compos. Mater., 44, 2289 (2010).

    Article  Google Scholar 

  29. A. Salehi-Khojin, R. Bashirzadeh, M. Mahinfalah, and R. Nakhaei-Jazar, Compos. Part B, 37, 593 (2006).

    Article  Google Scholar 

  30. M. S. Rim, E. H. Kim, I. Lee, I. H. Choi, S. M. Ahn, K. N. Koo, J. S. Bae, and J. H. Roh, J. Theor. Appl. Mech., 49, 841 (2011).

    Google Scholar 

  31. M. Dawood, M. W. El-Tahan, and B. Zheng, Compos. Part B, 77, 238 (2015).

    Article  CAS  Google Scholar 

  32. H. S. Lei, Z. Q. Wang, L. Y. Tong, B. Zhou, and J. Fu, Compos. Struct., 101, 301 (2013).

    Article  Google Scholar 

  33. K. T. Lau, A. W. L. Chan, S. Q. Shi, and L. M. Zhou, Mater. Des., 23, 265 (2002).

    Article  CAS  Google Scholar 

  34. F. Barrie, D. B. Futch, D. H. D. Hsu, and M. V. Manuel, Mater. Des., 57, 98 (2014).

    Article  CAS  Google Scholar 

  35. G. D. Rió, R. Zaera, E. Barbero, and C. Navarro, Compos. Part B, 36, 41 (2005).

    Article  Google Scholar 

  36. K. T. Tan, N. Watanabe, and Y. Iwahori, Int. J. Damage Mech., 21, 51 (2012).

    Article  CAS  Google Scholar 

  37. J. Raghavan, T. Bartkiewicz, S. Boyko, M. Kupriyanov, N. Rajapakse, and B. Yu, Compos. Part B, 41, 214 (2010).

    Article  Google Scholar 

  38. P. F. Liu, J. K. Chu, Y. L. Liu, and J. Y. Zheng, Mater. Des., 37, 228 (2012).

    Article  CAS  Google Scholar 

  39. S. L. Angioni1, M. Meo, and A. Foreman, Smart Mater. Struct., 20, 013001 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Natural Science Fund of the Inner Mongolia Autonomous Region and the Innovation Fund Project of Inner Mongolia University of Science and Technology, Grant NO. 2020BS01008 and 2019QDL-B49.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingfang Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Zhang, X., Zhao, J. et al. Impact Behavior of Shape Memory Alloy Hybrid Composites under Different Temperatures. Fibers Polym 23, 515–526 (2022). https://doi.org/10.1007/s12221-022-3348-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-3348-4

Keywords

Navigation