Skip to main content
Log in

Effects of Length and Oxidation of Multi-walled Carbon Nanotubes on the Mechanical and Electrical Properties for Epoxy Matrix Composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This work investigated the effects of length and oxidation of multiwalled carbon nanotubes (CNTs) on the interfacial strength, fracture toughness enhancement and conductivity for epoxy matrix composites by experiment. Firstly, a seven-step processing scheme was proposed to obtain highly dispersed CNT-epoxy composites. Subsequently, two feasible methods were presented to characterize the interfacial strength and used to study the effects of length and oxidation of CNTs on the interfacial strength. Thirdly, based on the experimental results of the fracture toughness of CNT-epoxy composites, we proposed a new fracture theory for CNT-based composites which is contrary to the conventional fracture theory for fiber-based composites. The experimental results show that the fracture toughness enhancement reaches maximum at the critical oxidation time, when the interfacial strength equals CNT strength. At last, to obtain CNT-epoxy composites with both high mechanical and electrical properties, a feasible solution was put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Blackburn, A. J. Ferguson, C. Cho, and J. C. Grunlan, Adv. Mater., 30, 1704386 (2018).

    Article  Google Scholar 

  2. K. Koziol, J. Vilatela, A. Moisala, M. Motta, P. Cunniff, M. Sennett, and A. Windle, Science, 318, 1892 (2007).

    Article  CAS  Google Scholar 

  3. Z. Wu, K. Pei, L. Xing, X. Yu, W. You, and R. Che, Adv. Funct. Mater., 29, 1901448 (2019).

    Article  Google Scholar 

  4. M. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science, 287, 637 (2000).

    Article  CAS  Google Scholar 

  5. M. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, Phys. Rev. Lett., 84, 5552 (2000).

    Article  CAS  Google Scholar 

  6. X. Zhang, Q. Li, T. G. Holesinger, P. N. Arendt, J. Huang, P. D. Kirven, T. G. Clapp, R. F. DePaula, X. Liao, Y. Zhao, L. Zheng, D. E. Peterson, and Y. Zhu, Adv. Mater., 19, 4198 (2007).

    Article  CAS  Google Scholar 

  7. Z. Q. Zhang, B. Liu, Y. L. Chen, H. Jiang, K. C. Hwang, and Y. Huang, Nanotechnology, 19, 395702 (2008).

    Article  CAS  Google Scholar 

  8. Y. L. Chen, B. Liu, X. Q. He, Y. Huang, and K. C. Hwang, Compos. Sci. Technol., 70, 1360 (2010).

    Article  CAS  Google Scholar 

  9. Y. Chen, S. Wang, B. Liu, and J. Zhang, Compos. Struct., 122, 496 (2015).

    Article  Google Scholar 

  10. F. Ding, J. Liu, S. Zeng, Y. Xia, K. M. Wells, M. P. Nieh, and L. Sun, Sci. Adv., 3, e1701212 (2017).

    Article  Google Scholar 

  11. I. A. Kinloch, J. Suhr, J. Lou, R. J. Young, and P. M. Ajayan, Science, 362, 547 (2018).

    Article  CAS  Google Scholar 

  12. Y. Li, S. Wang, Q. Wang, and M. Xing, Compos. Part B Eng., 133, 35 (2018).

    Article  CAS  Google Scholar 

  13. A. R. Ravindran, R. B. Ladani, C. H. Wang, and A. P. Mouritz, Compos. Part B Eng., 161, 18 (2019).

    Article  CAS  Google Scholar 

  14. C. Zhao, P. Zhang, J. Zhou, S. Qi, Y. Yamauchi, R. Shi, R. Fang, Y. Ishida, S. Wang, A. P. Tomsia, M. Liu, and L. Jiang, Nature, 580, 210 (2020).

    Article  CAS  Google Scholar 

  15. A. Sanli and O. Kanoun, J. Compos. Mater., 54, 845 (2020).

    Article  CAS  Google Scholar 

  16. A. Sanli, Adv. Compos. Mater., 29, 31 (2020).

    Article  Google Scholar 

  17. Z. Špitalský, C. A. Krontiras, S. N. Georga, and C. Galiotis, Compos. Part A Appl. Sci. Manuf., 40, 778 (2009).

    Article  Google Scholar 

  18. D. Kastanis, D. Tasis, K. Papagelis, J. Parthenios, C. Tsakiroglou, and C. Galiotis, Adv. Compos. Lett., 16, 243 (2007).

    Article  Google Scholar 

  19. V. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, and C. Galiotis, Carbon, 46, 833 (2008).

    Article  CAS  Google Scholar 

  20. P. Pandey, S. Mohanty, and S. K. Nayak, Int. J. Chem. Eng., 2014, 623109 (2014).

    Article  Google Scholar 

  21. P. C. Ma, N. A. Siddiqui, G. Marom, and J. K. Kim, Compos. Part A Appl. Sci. Manuf., 41, 1345 (2010).

    Article  Google Scholar 

  22. G. Gkikas, N. M. Barkoula, and A. S. Paipetis, Compos. Part B Eng., 43, 2697 (2012).

    Article  CAS  Google Scholar 

  23. T. Xu, Z. Qi, J. Tian, and X. Li, Mater. Res. Express, 8, 015014 (2021).

    Article  CAS  Google Scholar 

  24. L. Tang, H. Zhang, J. Han, X. Wu, and Z. Zhang, Compos. Sci. Technol., 72, 7 (2011).

    Article  CAS  Google Scholar 

  25. J. Sanes, N. Saurín, F. J. Carrión, G. Ojados, and M. D. Bermúdez, Compos. Part B Eng., 105, 149 (2016).

    Article  CAS  Google Scholar 

  26. J. Cha, J. Kim, S. Ryu, and S. H. Hong, Compos. Part B Eng., 162, 283 (2019).

    Article  CAS  Google Scholar 

  27. A. Badakhsh, Y. M. Lee, K. Y. Rhee, C. W. Park, K. H. An, and B. J. Kim, Compos. Part B Eng., 175, 107075 (2019).

    Article  Google Scholar 

  28. K. Peng, L. Liu, H. Li, H. Meyer, and Z. Zhang, Carbon, 49, 70 (2011).

    Article  CAS  Google Scholar 

  29. N. Tajima, T. Watanabe, T. Morimoto, K. Kobashi, K. Mukai, K. Asaka, and T. Okazaki, Carbon, 152, 1 (2019).

    Article  CAS  Google Scholar 

  30. N. Lachman and H. D. Wagner, Compos. Part A Appl. Sci. Manuf., 41, 1093 (2010).

    Article  Google Scholar 

  31. D. Hull and T. Clyne, “An Introduction to Composite Materials”, 2nd ed., Cambridge University Press, London, 2001.

    Google Scholar 

  32. M. Li, M. Boggs, T. P. Beebe, and C. P. Huang, Carbon, 46, 466 (2008).

    Article  CAS  Google Scholar 

  33. B. Liu and Y. L. Chen, Compos. Sci. Technol., 70, 1360 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenbin Jia or Lei Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, W., Chen, Z. & Fang, L. Effects of Length and Oxidation of Multi-walled Carbon Nanotubes on the Mechanical and Electrical Properties for Epoxy Matrix Composites. Fibers Polym 23, 1332–1341 (2022). https://doi.org/10.1007/s12221-022-3335-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-3335-9

Keywords

Navigation