Skip to main content
Log in

Fabrication of a Flexible Si-cotton Filter Membrane for Efficient Hot Oil/Hot Water Separation

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Increasing oily industrial waste water at room and high temperatures has become one of the most significant threats to the global ecosystem. Finding a suitable method for separating hot-oil/water pollution with an appropriate filter is highly necessary to effectively solve this problem. In this study, high-temperature oil/water separation was achieved using a silicon-modified textile (Si-cotton) as a filter, which was fabricated using polydimethylsiloxane (PDMS) solution as the precursor and through plasma polymerization. The plasma polymerization generated a uniform micro and nanoscale hierarchical structure on the Si-cotton surface. Furthermore, XPS and FT-IR analysis showed the lowering of the O/C ratio on the Si-cotton surface with respect to the pristine textile, and the presence of silicon on the Si-cotton surface after the plasma process. The results of these factors can be critical in making the final hydrophobic/oleophilic behaviour of the textile. More importantly, the Si-cotton membrane was tested for the separation process of hot oil/hot water mixture, which showed an acceptable efficiency even after fifteen separation cycles. The findings offered a two-step method, efficient and green, which was capable of working well even at a high temperature, to fabricate a flexible and scalable Si-cotton textile filter for reducing the necessity of additional and complicated cooling processes in the presence of high-temperature oil/water mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Padaki, R. S. Murali, M. S. Abdullah, N. Misdan, A. Moslehyani, M. A. Kassim, N. Hilal, and A. F. Ismail, Desalination, 357, 197 (2015).

    Article  CAS  Google Scholar 

  2. Q. Ma, H. Cheng, Y. Yu, Y. Huang, Q. Lu, S. Han, J. Chen, R. Wang, A. G. Fane, and H. Zhang, Small, 13, 1700391 (2017).

    Article  Google Scholar 

  3. L. N. Nthunya, L. Gutierrez, S. Derese, N. Edward, A. R. Verliefde, B. Mamba, and S. D. Mhlanga, J. Chem. Technol. Biotechnol., 94, 2757 (2019).

    Article  CAS  Google Scholar 

  4. A. K. Singh and J. K. Singh, Prog. Org. Coat., 131, 301 (2019).

    Article  CAS  Google Scholar 

  5. J. Wang, S. Liu, and S. Guo, Appl. Surf. Sci., 503, 144180 (2020).

    Article  CAS  Google Scholar 

  6. G. Mahmodi, S. Dangwal, P. Zarrintaj, M. Zhu, Y. Mao, D. N. Mcllroy, M. Saeb, V. Vatanpour, J. D. Ramsey, and S. Kim, Sep. Purif. Technol., 240, 116630 (2020).

    Article  CAS  Google Scholar 

  7. W. Meng, P. Li, Y. Lan, X. Shi, S. Peng, H. Qu, and J. Xu, Sep. Purif. Technol., 233, 115988 (2020).

    Article  Google Scholar 

  8. W. Ma, S. K. Samal, Z. Liu, R. Xiong, S. C. De Smedt, B. Bhushan, Q. Zhang, and C. Huang, J. Memb. Sci., 537, 128 (2017).

    Article  CAS  Google Scholar 

  9. J. H. Lee, D. H. Kim, and Y. D. Kim, J. Ind. Eng. Chem., 35, 140 (2016).

    Article  CAS  Google Scholar 

  10. J. Wang, F. Han, B. Liang, and G. Geng, J. Ind. Eng. Chem., 54, 174 (2017).

    Article  CAS  Google Scholar 

  11. C. Yeom and Y. Kim, J. Ind. Eng. Chem., 40, 47 (2016).

    Article  CAS  Google Scholar 

  12. X. Du, X. Huang, X. Li, X. Meng, L. Yao, J. He, H. Huang, and X. Zhang, J. Colloid Interface Sci., 458, 79 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. F. Liu, M. Ma, D. Zang, Z. Gao, and C. Wang, Carbohydr. Polym., 103, 480 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. J. Yuan, X. Liu, O. Akbulut, J. Hu, S. L. Suib, J. Kong, and F. Stellacci, Nat. Nanotechnol., 3, 332 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Y. Chu and Q. Pan, ACS Appl. Mater. Interfaces, 4, 2420 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Q. Ma, H. Cheng, A. G. Fane, R. Wang, and H. Zhang, Small, 12, 2186 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. C. H. Xue, S. T. Jia, H. Z. Chen, and M. Wang, Sci. Technol. Adv. Mater., 9, 035001 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Y. Jin, P. Jiang, Q. Ke, F. Cheng, Y. Zhu, and Y. Zhang, J. Hazard. Mater., 300, 175 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. S. F. Chin, A. N. Binti Romainor, and S. C. Pang, Mater. Lett., 115, 241 (2014).

    Article  CAS  Google Scholar 

  20. B. Cortese, D. Caschera, F. Federici, G. M. Ingo, and G. Gigli, J. Mater. Chem. A., 2, 6781 (2014).

    Article  CAS  Google Scholar 

  21. S. Asadollahi, J. Profili, M. Farzaneh, and L. Stafford, Materials, 12, 219 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  22. D. Aslanidou, I. Karapanagiotis, and C. Panayiotou, Prog. Org. Coat., 97, 44 (2016).

    Article  CAS  Google Scholar 

  23. B. Ge, X. Yang, H. Li, L. Zhao, G. Ren, X. Miao, X. Pu, and W. Li, Colloids Surf. A Physicochem. Eng. Asp., 585, 124027 (2020).

    Article  CAS  Google Scholar 

  24. T. He, H. Zhao, Y. Liu, C. Zhao, L. Wang, H. Wang, Y. Zhao, and H. Wang, Colloids Surf. A Physicochem. Eng. Asp., 585, 124080 (2020).

    Article  CAS  Google Scholar 

  25. W. Ma, M. Zhang, Z. Liu, M. Kang, and C. Huang, J. Memb. Sci., 570–571, 303 (2019).

    Article  Google Scholar 

  26. A. K. Singh and J. K. Singh, RSC Adv., 6, 103632 (2016).

    Article  CAS  Google Scholar 

  27. R. G. Toro, P. Calandra, F. Federici, T. de Caro, A. Mezzi, B. Cortese, A. L. Pellegrino, G. Malandrino, and D. Caschera, J. Mater. Sci., 55, 2846 (2020).

    Article  CAS  Google Scholar 

  28. S. Rasouli, N. Rezaei, H. Hamedi, S. Zendehboudi, and X. Duan, Mater. Des., 204, 109599 (2021).

    Article  CAS  Google Scholar 

  29. Y. Li, Z. Zhang, M. Wang, X. Men, and Q. Xue, J. Mater. Chem. A, 5, 5077 (2017).

    Article  CAS  Google Scholar 

  30. L. Xu, W. Wang, J. Deng, Y. Guo, R. Zhang, J. Yu, and F. Ji, Text. Res. J., 89, 2952 (2019).

    Article  CAS  Google Scholar 

  31. G. Liu, W. Wang, and D. Yu, Cellulose, 26, 3529 (2019).

    Article  CAS  Google Scholar 

  32. D. Caschera, B. Cortese, A. Mezzi, M. Brucale, G. M. Ingo, G. Gigli, and G. Padeletti, Langmuir, 29, 2775 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. C. Jiang, W. Liu, Y. Sun, C. Liu M. Yang, and Z. Wang, J. Appl. Polym. Sci., 136, 47005 (2019).

    Article  Google Scholar 

  34. J. A. Juárez-Moreno, A. Ávila-Ortega, A. I. Oliva, F. Avilés, and J. V. Cauich-Rodríguez, Appl. Surf. Sci., 349, 763 (2015).

    Article  Google Scholar 

  35. B. Cortese, D. Caschera, G. Padeletti, G. M. Ingo, and G. Gigli, Surf. Innov., 1, 140 (2013).

    Article  Google Scholar 

  36. L. Xu, J. Deng, Y. Guo, W. Wang, R. Zhang, and J. Yu, Text. Res. J, 89, 1853 (2019).

    Article  CAS  Google Scholar 

  37. R. Molina, J. M. Teixidó, C. W. Kan, and P. Jovančić, ACS Appl. Mater. Interfaces, 9, 5531 (2017).

    Article  Google Scholar 

  38. L. Ghorbani, A. Khatibi, and B. Shokri, Iran. J. Phys. Res., 19, 683 (2020).

    Google Scholar 

  39. D. Caschera, A. Mezzi, L. Cerri, T. de Caro, C. Riccucci, G. M. Ingo, G. Padeletti, M. Biasiucci, G. Gigli, and B. Cortese, Cellulose, 21, 741 (2014).

    Article  CAS  Google Scholar 

  40. J. Vasiljević, M. Gorjanc, B. Tomšič, B. Orel, I. Jerman, M. Mozetič, A. Vesel, and B. Simončič, Cellulose, 20, 277 (2013).

    Article  Google Scholar 

  41. K. Tsougeni, A. Tserepi, G. Boulousis, V. Constantoudis, and E. Gogolides, Plasma Process. Polym., 4, 398 (2007).

    Article  CAS  Google Scholar 

  42. N. Atthi, W. Sripumkhai, P. Pattamang, O. Thongsook, A. Srihapat, R. Meananeatra, J. Supadech, N. Klunngien, and W. Jeamsaksiri, Microelectron. Eng., 224, 111255 (2020).

    Article  CAS  Google Scholar 

  43. U. Eduok, O. Faye, and J. Szpunar, Prog. Org. Coat., 111, 124 (2017).

    Article  CAS  Google Scholar 

  44. T. Yabuta, E. P. Bescher, J. D. Mackenzie, K. Tsuru, S. Hayakawa, and A. Osaka, J. Solgel Sci. Technol., 26, 1219 (2003).

    Article  CAS  Google Scholar 

  45. J.-H. Shin, J.-H. Heo, S. Jeon, J. H. Park, S. Kim, and H.-W. Kang, J. Hazard. Mater., 365, 494 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. P. R. Bevington, D. K. Robinson, J. M. Blair, A. J. Mallinckrodt, and S. McKay, “Data Reduction and Error Analysis for the Physical Sciences”, Vol. 7, p.415, Computers in Physics, University of California, USA, 1993.

    Google Scholar 

  47. M. Wang, X. Long, J. Du, C. Sun, S. Fu, and C. Xu, Text. Res. J., 84, 2149 (2014).

    Article  Google Scholar 

  48. Y. Wang, M. Wang, J. Wang, H. Wang, X. Men, and Z. Zhang, J. Taiwan Inst. Chem. Eng., 99, 215 (2019).

    Article  CAS  Google Scholar 

  49. D. Cia, A. Neyer, R. Kuckuk, and H. M. Heise, J. Mol. Struct., 976, 274 (2010).

    Article  Google Scholar 

  50. D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, “The Handbook of Infrared and Raman Characteristic Frequency of Organic Molecules”, p.251, Academic Press, California, USA, 1991.

    Book  Google Scholar 

  51. Z. Wu, N. Xanthopoulos, F. Reymond, J. S. Rossier, and H. H. Girault, Electrophoresis, 23, 782 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. A. B. D. Cassie and S. Baxter, Trans. Faraday Soc., 40, 546 (1994).

    Article  Google Scholar 

  53. D. Caschera, R. G. Toro, F. Federici, C. Riccucci, G. M. Ingo, G. Gigli, and B. Cortese, Cellulose, 22, 2797 (2015).

    Article  CAS  Google Scholar 

  54. R. Jafari, S. Asadollahi, and M. Farzaneh, Plasma Chem. Plasma Process., 33, 177 (2013).

    Article  CAS  Google Scholar 

  55. A. Zille, F. R. Oliveira, and A. P. Souto, Plasma Process. Polym., 12, 98 (2015).

    Article  CAS  Google Scholar 

  56. Y. Li, C. Zou, J. Shao, and Y. Li, Text. Res. J., 89, 401 (2019).

    Article  CAS  Google Scholar 

  57. M. P. Gashti, F. Alimohammadi, and A. Shamei, Surf. Coatings Technol., 206, 3208 (2012).

    Article  CAS  Google Scholar 

  58. S. Li, J. Huang, M. Ge, C. Cao, S. Deng, S. Zhang, G. Chen, K. Zhang, S. S. Al-Deyab, and Y. Lai, Adv. Mater. Interfaces, 2, 1500220 (2015).

    Article  Google Scholar 

  59. H. Hosseinzadeh and S. Mohammadi, Water Air Soil Pollut., 225, 2115 (2014).

    Article  Google Scholar 

  60. B. Ye, C. Jia, Z. Li, L. Li, Q. Zhao, J. Wang, and H. Wu, J. Appl. Polym. Sci., 137, 49103 (2020).

    Article  CAS  Google Scholar 

  61. C. Ao, W. Yuan, J. Zhao, X. He, X. Zhang, Q. Li, T. Xia, W. Zhang, and C. Lu, Carbohydr. Polym., 175, 216 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. J. Yang, Y. Tang, J. Xu, B. Chen, H. Tang, and C. Li, Surf. Coat. Technol., 272, 285 (2015).

    Article  CAS  Google Scholar 

  63. M. Cao, X. Luo, H. Ren, and J. Feng, J. Colloid Interface Sci., 512, 567 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. C. Teng, X. Lu, G. Ren, Y. Zhu, M. Wan, and L. Jiang, Adv. Mater. Interfaces, 1, 1400099 (2014).

    Article  Google Scholar 

Download references

Acknowledgement

The authors are very thankful to Mr Saeed Javadi for his assistance in SEM imaging.

This work has been supported by the Plasma Laboratory in Shahid Beheshti University. The authors declare that this research has been carried out without receiving any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Shokri.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, L., Khatibi, A., Basuvalingam, S.B. et al. Fabrication of a Flexible Si-cotton Filter Membrane for Efficient Hot Oil/Hot Water Separation. Fibers Polym 23, 843–851 (2022). https://doi.org/10.1007/s12221-022-3236-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-3236-y

Keywords

Navigation