Skip to main content

Impact of Dry and Wet Cleaning on Structural, Mechanical and Protective Properties of Fabrics Designed for Electromagnetic Shield Application

Abstract

The basic requirement on protective textiles is stability and durability of functional properties under application conditions where textiles are exposed to mechanical and chemical influences. The aim of this study is the investigation of structural parameters, mechanical and functional properties of fabrics designed for electromagnetic shield applications before and after wet and dry cleaning cycles. Three fabrics were selected, two of them coated with a copper and one with stainless steel woven thread in the weft direction. Measurement of thickness, surface area, dimensions and breaking force of all samples before and after 5 and 10 cycles was done by standard methods. The surface of copper-coated samples before and after 5 and 10 dry and wet cleaning cycles was observed by scanning electron microscopy. Shielding effectiveness (SE) against electromagnetic (EM) non-ionizing microwave radiation was monitored before and after professional care at frequencies of 0.9 GHz; 1.8 GHz; 2.1 GHz and 2.4 GHz. According to the obtained results, the cycles of dry and wet cleaning affect structural parameters, mechanical properties and shielding effectiveness of functional fabrics. The impact of dry and wet cleaning through 10 cycles on SE properties of fabric III (modacryl/cotton with Inox yarn) is less pronounced than on two copper coated fabrics. Changes in dimensions and breaking forces of fabrics have a relatively high degree of correlation.

This is a preview of subscription content, access via your institution.

References

  1. A. Das, V. K. Kothari, A. Kothari, A. Kumar, and S. Tuli, Indian J. Fiber. Text. Res., 34, 144 (2009).

    CAS  Google Scholar 

  2. B. Šaravanja, K. Malarić, T. Pušić, and D. Ujević in 7th International Professional and Scientific Conference “Occupational Safety and Health” (S. Kirin Ed.), pp.617–622, Karlovac, 2018.

  3. WikiLectures, Light, Eye and Vision, https://www.wikilectures.eu/w/Light, Eye and Vision (Accessed October 23, 2019).

  4. G. Priniotakis, E. Sfyroera, S. Symeonidis, S. A. Mitilineos, S. Vassiliadis, C. Zafeiri, and S. Moudatsou, Mater. Sci. Eng., 1, 459 (2018).

    Google Scholar 

  5. B. Šaravanja, K. Malarić, T. Pušić, and D. Ujević, Fibres Text. East. Eur., 1, 104 (2015).

    Google Scholar 

  6. B. Šaravanja, K. Malarić, T. Pušić, and D. Ujević, Autex Res. J., 15, 93 (2015).

    Article  Google Scholar 

  7. A. Hulle and A. Powar, J. Text. Sci. Eng., 8, 347 (2018).

    Google Scholar 

  8. V. Safarova and J. Militky, Text. Res. J., 84, 1255 (2014).

    CAS  Article  Google Scholar 

  9. B. Šaravanja, K. Malarić, and T. Pušić, Holist. Appro. Environ., 9, 70 (2019).

    Article  Google Scholar 

  10. H. Ozdemir, S. S. Ugurlu, and A. Ozkurt, J. Ind. Text., 45, 416 (2015).

    CAS  Article  Google Scholar 

  11. C. R. Cork in “Electronic Textiles. Smart Fabrics and Wearable Technology” (T. Dias Ed.), Woodhead Publishing Series, The Textile Institute, 2015.

  12. N. Rajkishore, C. Ian, K. Sinnappoo, D. Jie, T. Pang, L. Bin, M. Menghe, G. Deepak, and W. Lijing, Text. Res. J., 8, 1 (2009).

    Google Scholar 

  13. I. Yesildag and H. Kadoglu, Mater. Sci. Eng., 459, 1 (2019).

    Google Scholar 

  14. M. S. Ozen, E. Sancak, A. Beyit, I. Usta, and M. Akalin, Text Res. J., 83, 849 (2013).

    Article  Google Scholar 

  15. Z. Liu, Y. Su, Z. Pan, Y. Li and X. Wang, and Z. Zhou, Fibres Text. East. Eur., 122, 62 (2017).

    Article  Google Scholar 

  16. I. Ozkan and T. Abdurrahman, J. Eng. Fibers Fabr., 14, 1 (2019).

    Google Scholar 

  17. V. Safarova, M. Tunak, M. Truhlar, and J. Militky, Text. Res. J., 86, 44 (2016).

    CAS  Article  Google Scholar 

  18. X. Wang, Z. Liu, and M. Jiao, Prog. Electromagn. Res. B, 47, 19 (2013).

    CAS  Article  Google Scholar 

  19. H. R. Kim, K. Fujimori, B. S. Kim, and I. S. Kim, Compos. Sci. Technol., 72, 1233 (2012).

    CAS  Article  Google Scholar 

  20. A. Proudnik, Y. Zamastotsky, V. Siarheyev, V. Siuborov, E. Stankevich, and I. Pobol, Electr. Rev., 6, 81 (2012).

    Google Scholar 

  21. S. Maity, K. Singha, P. Debnath, and M. Singha, J. Saf. Eng., 2, 11 (2013).

    Google Scholar 

  22. X. Zhu, X. Li, and B. Sun, Electr. Rev., 88, 42 (2012).

    Google Scholar 

  23. R. Perumalraj, B. S. Dasaradan, R. Anbarasu, P. Arokiaraj, and S. Leo Harish, J. Text. Inst., 100, 512 (2009).

    Article  Google Scholar 

  24. C. I. Su and J. T. Chern, Text. Res. J., 74, 51 (2004).

    CAS  Article  Google Scholar 

  25. K. Sarkar, D. Das, and S. Chattopadhyay, Procedia Eng., 216, 93 (2017).

    Article  Google Scholar 

  26. H. C. Chen, K. C. Lee, J. H. Lin, and M. Koch, J. Mater. Process. Tech., 184, 124 (2007).

    CAS  Article  Google Scholar 

  27. E. K. Ceven, A. Karakucuk, A. E. Dirik, and U. Yalcin, Ind. Text., 68, 289 (2017).

    CAS  Article  Google Scholar 

  28. S. Kovačević, K. Dimitrovski, and J. Hađina, “The Processes of Weaving” (Z. Dragčević Ed.), University of Zagreb Faculty of Textile Technology, 2008.

  29. V. Tunakova, L. Technikova, and J. Militky, Text. Res. J., 87, 175 (2017).

    CAS  Article  Google Scholar 

  30. I. Kazani, C. Hertleer, G. De Mey, G. Guxho, and L. Van Langenhove, Text. Res. J., 83, 1541 (2013).

    Article  Google Scholar 

  31. T. Rijavec, S. Jevšnik, I. Soljačić, A. Tomljenović, K. Višić, and T. Pušić, Text. Res. J., 85, 632 (2015).

    CAS  Article  Google Scholar 

  32. B. Šaravanja, K. Malarić, T. Pušić, and D. Ujević, Fiber. Polym., 17, 136 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been fully supported in part by Croatian Science Foundation under the projects HRZZ-IP-2018-01-7028 and HRZZ-lP-2018-01-3170.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bosiljka Šaravanja.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Šaravanja, B., Kovačević, S., Pušić, T. et al. Impact of Dry and Wet Cleaning on Structural, Mechanical and Protective Properties of Fabrics Designed for Electromagnetic Shield Application. Fibers Polym 23, 666–679 (2022). https://doi.org/10.1007/s12221-022-3028-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-3028-4

Keywords

  • Functional fabrics
  • Shield effect
  • Dry and wet cleaning
  • SEM
  • Structural and mechanical properties of fabrics