Skip to main content
Log in

Effects of Introduction of L-Lactide on Microstructures, Thermal Properties and In vitro Degradation of Poly(glycolide-co-ε-caprolactone) Block Copolymer

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, poly(glycolide-co—caprolactone) (PGCL) block copolymers, which have an ABA block structure, were prepared by a two-step polymerization process, and their microstructures, thermal properties and in vitro degradation properties according to introducing a small amount of L-lactide as a comonomer in the first step of the polymerization process were systematically investigated. Through our study, it was confirmed that the introduction of L-lactide in the first step of the polymerization process had a great effect on the microstructure of the random PGCL prepolymer (B block) as well as the final PGCL block copolymer (ABA block). Specifically, with the introduction of L-lactide, the average sequence length of glycolide segments on the PGCL prepolymer decreased from 3.32 to 2.40. In addition, it was observed that there is a relatively large difference in the average sequence length of glycolide segments in the final PGCL block copolymers. As a result, these microstructural changes of the PGCL prepolymer originated from the L-lactide comonomer affected significantly the thermal properties and in vitro degradation properties on the final PGCL block copolymers. Compared with the PGCL block copolymer without L-lactide, melting temperature and crystallization temperature of the PGCL block copolymer with L-lactide decreased, as well as their thermal degradation temperature. In addition, the introduction of a small amount of L-lactide comonomer accelerated the hydrolytic degradation of the PGCL block copolymer. Overall, by introducing L-lactide copolymer in the first step of the two-step manufacturing process for the PGCL block copolymer, changes of various properties on the PGCL block copolymer originated from the changes in the microstructure of random PGCL prepolymer were confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Vert, S. M. Li, G. Spenlehauer, and P. Guerin, J. Mater. Sci. Mater. Med., 3, 432 (1992).

    Article  CAS  Google Scholar 

  2. R. P. Brannigan and A. P. Dove, Biomater. Sci., 5, 9 (2017).

    Article  CAS  Google Scholar 

  3. S. Li, J. Biomed. Mater. Res., 48, 342 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. A. C. Albertsson and I. K. Varma, Biomacromolecules, 4, 1466 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. C. K. S. Pillai and C. P. Sharma, J. Biomater. Appl., 25, 291 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. M. Hiljanen-Vainio, P. Varpomaa, J. Seppälä, and P. Törmälä, Macromol. Chem. Phys., 197, 1503 (1996).

    Article  CAS  Google Scholar 

  7. Y. Baimark, R. Molloy, N. Molloy, J. Siripitayananon, W. Punyodom, and M. Sriyai, J. Mater. Sci. Mater. Med., 16, 699 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. K. Tomihata, M. Suzuki, and N. Tomita, Bio-Med. Mater. Eng., 15, 381 (2005).

    CAS  Google Scholar 

  9. R. S. Bezwada, D. D. Jamiolkowski, I. Y. Lee, V. Agarwal, J. Persivale, S. Trenka-Benthin, M. Erneta, J. Suryadevara, A. Yang, and S. Liu, Biomaterials, 16, 1141 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. D. D. Jamiolkowski and S. W. Shalaby, US Patent, 4,700,704 (1987).

  11. R. S. Bezwada, D. D. Jamiolkowski, and S. W. Shalaby, US Patent, 5,133,739 (1992).

  12. N. J. Park, M. H. Jee, S. H. Song, S. K. Ahn, K. C. Choi, and D. H. Baik, Text. Sci. Eng., 47, 34 (2010).

    CAS  Google Scholar 

  13. S. Y. Choi, M. H. Jee, N. J. Park, S. H. Song, K. C. Choi, and D. H. Baik, Text. Sci. Eng., 48, 51 (2011).

    CAS  Google Scholar 

  14. J. W. Pack, S. H. Kim, I. W. Cho, S. Y. Park, and Y. H. Kim, J. Polym. Sci. A Polym. Chem., 40, 544 (2002).

    Article  CAS  Google Scholar 

  15. Z. Wei, L. Liu C. Qu, and M. Qi, Polymer, 50, 1423 (2009).

    Article  CAS  Google Scholar 

  16. J. Kasperczyk, Macromol. Chem. Phys., 200, 903 (1999).

    Article  CAS  Google Scholar 

  17. G. Sivalingam and G. Madras, Polym. Degrad. Stab., 84, 393 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Ho Jee or Doo Hyun Baik.

Additional information

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jee, M.H., Park, J.H., Choi, S.Y. et al. Effects of Introduction of L-Lactide on Microstructures, Thermal Properties and In vitro Degradation of Poly(glycolide-co-ε-caprolactone) Block Copolymer. Fibers Polym 23, 2683–2691 (2022). https://doi.org/10.1007/s12221-022-0283-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-0283-3

Keywords

Navigation